

Wavelets in real time digital audio processing:

Analysis and sample implementations

Master’s thesis

Presented at the

Department of Computer Science IV

Prof. Dr. W. Effelsberg

Advisor Dipl.-Math Claudia Schremmer

University of Mannheim

in May 2000

by

Florian Bömers

from Bremen

in collaboration with

I3 Srl., Rome, Italy

Contents

 - I -

Contents

ABBREVIATIONS ...III

INDEX OF FIGURES ... V

INDEX OF TABLES AND EQUATIONS... VI

1 INTRODUCTION...1

1.1 Motivation ...1

1.2 Limits of this thesis...1

1.3 Structure of the Thesis ...2

2 BASIC CONCEPTS ..3

2.1 Fundamentals of Digital Audio ...3

2.2 AD-DA Conversion...6

2.3 Analysis-Resynthesis ..10

3 THE SHORT TIME FOURIER TRANSFORM ...11

3.1 Overview ...11

3.2 Discrete Analysis and Resynthesis ..13

3.3 Frequency Bands ..13

3.4 Windowing ..14

3.5 Time/Frequency Uncertainty ..17

3.6 Spectral Representation...18

3.7 STFT for processing Musical Signals ...21

4 THE WAVELET TRANSFORM...24

4.1 Introduction ..24

4.2 Constant Q Filter Bank Analysis ..25

4.3 Filter Bank Wavelet Transform..26

4.4 Wavelet Functions ..34

4.5 Connection of Filter Banks and Wavelet Functions ..38

4.6 Properties of the Wavelet Transform ...41

4.7 Wavelet Applications ...42

4.8 The WT for processing real-time Musical Signals...42

5 CHOOSING A WAVELET FOR PROCESSING MUSICAL SIGNALS44

5.1 Requirements ..44

5.2 Common Wavelets and their Properties...46

5.3 Decision ...50

6 COMPUTER-BASED ALGORITHM OF THE WAVELET TRANSFORM .51

6.1 Algorithm ..51

6.2 Implementation...54

6.3 Problems and Solutions..55

Wavelets in real time digital audio processing

 - II -

7 APPLICATIONS OF WAVELETS IN REAL TIME DIGITAL AUDIO61

7.1 Coding Style..61

7.2 The Audio Framework ..61

7.3 Implemented Extensions ...67

7.4 Implemented Fil ters...69

7.5 The GUI ..74

7.6 Noise Reduction..78

7.7 Equalizing...83

8 CONCLUSION ..86

BIBLIOGRAPHY ... VII

APPENDIX A - CLASS DESCRIPTION... A-1

A.1 Wavelet classes..A-1

A.2 Framework Core Classes..A-1

A.3 Framework Extensions...A-5

A.4 Fil ters ...A-6

A.5 Windows GUI ..A-8

APPENDIX B – CLASS INHERITANCE TREES ...B-1

B.1 Core Interfaces and Classes ...B-2

B.2 Platform-dependent Interfaces..B-3

B.3 High-level Classes..B-3

B.4 Windows Implementation ..B-3

APPENDIX C – AUDIO FRAMEWORK CHAINS ..C-1

C.1 Audio Chain of the GUI ..C-1

C.2 An example Audio Chain..C-1

APPENDIX D – THE CD-ROM...D-1

D.1 Directory “ Bibliography” ...D-1

D.2 Directory “ Program” ..D-1

D.3 Directory “ Readers” ...D-1

D.4 Directory “ Source” ..D-2

D.5 Directory “ Thesis” ..D-2

D.6 Directory “ Unsor ted Info” ..D-2

D.7 Audio par t ..D-2

Abbreviations

 - III -

Abbreviations

3D Three Dimensional

AD Analog to Digital

ADC Analog to Digital Converter

AIFF Audio Interchange File Format

CD Compact Disc

CD-ROM Compact Disc Read Only Memory

Codec Coder/Decoder

CPU Central Processing Unit

CWT Continuous Wavelet Transform

DA Digital to Analog

DFT Discrete Fourier Transform

DWT Discrete Wavelet Transform

etc. and so on (lat.: et cetera)

f. and following pages

FFT Fast Fourier Transform

Fig. Figure

FIR Finite Impulse Response (filter)

FT Fourier Transform

FWT Fast Wavelet Transform

GUI Graphical User Interface

Hi-fi High fidelity

HTML Hypertext Markup Language

Hz Hertz

i.e. that is (lat.: id est)

IIR Infinite Impulse Response (filter)

IO Input/Output

IWT Inverse Wavelet Transform

JPEG Joint Picture Experts Group

KB Kilo Bytes (1024 bytes)

KHz Kilo Hertz

MME Multimedia Extensions

Wavelets in real time digital audio processing

 - IV -

ms Milliseconds

NT Windows NT (New Technology)

p. Page

PC Personal Computer

PCM Pulse Code Modulation

PDF Portable Document Format

pp. Pages

QMF Quadrature Mirror Filter

SNR Signal-to-noise Ratio

STFT Short Time Fourier Transform

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

WT Wavelet Transform

Index of Figures

 - V -

Index of Figures
page

Fig. 1: A low pass filter frequency response .. 6

Fig. 2: The Fourier transform ... 12

Fig. 3: Frequency leakage... 15

Fig. 4: The window, windowed signal and its frequency plot.. 16

Fig. 5: Original signal in the time domain.. 18

Fig. 6: Line spectrum in the frequency domain .. 19

Fig. 7: 3d frequency plots ... 20

Fig. 8: Spectrogram .. 21

Fig. 9: Simple filter bank .. 27

Fig. 10: 2-channel filter bank with 4 output bands... 28

Fig. 11: Analysis/resynthesis filter bank .. 29

Fig. 12: overlapping lowpass and highpass filter responses (symbolized)..................... 29

Fig. 13: alternating signs pattern .. 30

Fig. 14: alternating flip pattern ... 31

Fig. 15: Wavelet packet tree ... 32

Fig. 16: Wavelet tree... 32

Fig. 17: Time- frequency and time- scale representation ... 33

Fig. 18: Wavelet resynthesis... 34

Fig. 19: Typical wavelet functions ... 35

Fig. 20: Time-domain function and its scalogram of the over-complete WT 37

Fig. 21: Daubechies 2 wavelet.. 40

Fig. 22: Daubechies wavelet family ... 47

Fig. 23: Performance of the transform algorithm dependent on filter length 60

Fig. 24: Audio streaming example.. 62

Fig. 25: Wavelet domain display filter (vertical scale=1.5) ... 71

Fig. 26: Screenshot of the GUI ... 74

Fig. 27: Soundcard input... 75

Fig. 28: Soundcard setup dialog ... 75

Fig. 29: File input ... 76

Fig. 30: Add filter dialog .. 77

Fig. 31: A filter setup dialog... 77

Wavelets in real time digital audio processing

 - VI -

Index of Tables and Equations

Page

Table 1: Noise reduction measurements... 82

Equation 1: Convolution... 26

Equation 2: Convolution in matrix representation ... 27

Equation 3: Wavelet basis [PPR91, 54].. 36

Equation 4: Forward CWT [STN96, 82] .. 36

Equation 5: Inverse CWT [STN96, 82].. 36

Equation 6: Forward DWT ... 37

Equation 7: inverse DWT [VAL99, (13)] .. 38

Equation 8: Dilation equation [STN96, 22].. 38

Equation 9: Wavelet equation [STN96, 24] ... 38

Equation 10: Generic forward transform.. 52

Equation 11: Decimated convolution matrix.. 53

Equation 12: Forward transform with direct filter bank matrix 53

Equation 13: Inverse transform with direct filter bank matrix 54

1 Introduction

 - 1 -

1 Introduction

1.1 Motivation

Digital processing of audio on personal computers is becoming more and more

common. Increasing hardware performance and decreasing price broadens possibiliti es

and quality. Even today’s standard PC’s are capable of processing CD-quality audio

data in real time, making it affordable even for amateurs and small studios to work in

the digital domain.

Real time audio processing allows modified audio to be heard while it is processed.

Although needing much CPU power, it significantly improves professional digital

audio: only when the effect of a changed parameter or setting (e.g. volume of an audio

track) can be heard instantly, the desired parameter combination can be found in an

acceptable time scale. Real time filters also improve non-destructive audio editing

possibiliti es and can reduce the needed disk space for filtered sections.

This thesis will evaluate the wavelet theory for the use in real time digital audio

processing. Wavelets provide a new way of gathering frequency information from

musical signals. Contrary to the traditionally employed technique for doing that based

on Fourier transforms - the STFT - time information is not lost in a portion of analyzed

audio data. This property (along with others, which are discussed later in this thesis)

promises that wavelets provide eff icient and suitable algorithms for real-time digital

audio processing.

For real-world examples, the applications demonstrate usage of the wavelet transform

for modification and enhancement of music. Several processing algorithms are

evaluated in respect to their suitabilit y.

1.2 Limits of this thesis

This is a thesis in the field of computer science – it is focused on the computer-specific

aspects of the wavelet theory. Consequently, the mathematical parts are not emphasized.

Wavelets in real time digital audio processing

 - 2 -

Most theoretic information is formulated in the text. For further reading on

mathematical background of wavelets and filter bank, the reader is referred to [STN96],

[MAL98] and [VEK95].

The objective of this thesis is to analyze the wavelet transform for processing digital

audio in real time. The early idea of calculating a new wavelet has been dropped due to

its immense mathematical complexity. It could fill an entire master’s thesis. Instead,

focus is put on the implementation of the wavelet transform and on the real-time aspect

of audio processing.

1.3 Structure of the Thesis

The thesis is divided into 3 parts. The first part in chapters 2 till 4 presents background

concepts of the thesis’ subject. These cover digital audio, Fourier transform and wavelet

transform. The first 2 are written non-technically, as only the understanding of the

concepts is the essential aim. More detail would exceed purpose and the page limit .

Chapter 4, however, provides more mathematical details, also as some formulas are

needed and used in the next chapters.

The second part studies how, and in which form, wavelets can be used for real time

digital audio signals. Chapter 5 presents different wavelets and their suitabilit y, while in

chapter 6 the computer implementation of the wavelet transform is discussed.

The last part in chapter 7 documents the programs written for the thesis. An overview of

the audio framework is outlined, followed by descriptions of the different example

applications of the wavelet transform. For each application, the theory is provided, as

well .

The thesis ends with a conclusion of the achieved results. Indexes for figures, equations

and tables are given at the beginning, the biobliography is at the end. In the appendixes,

the classes of the audio framework are described. Furthermore, the contents of the

accompanying CD are described. All referenced documents available in electronic

format are included on it, along with the example applications.

2 Basic Concepts

 - 3 -

2 Basic Concepts

This chapter provides a general, non-technical overview of digital audio. The presented

concepts mainly outline the difference of hearable sounds and how they are represented

in a computer. Understanding is required for further reading.

2.1 Fundamentals of Digital Audio

2.1.1 Analog Domain

Sounds, as the ear can hear them, are small changes in air pressure, which stimulate the

eardrum. Any sound, even very complex ones, is an ongoing change of air pressure –

lower and higher with different strengths. In analog audio systems, these changes are

captured by a microphone and transformed to levels of electrical voltage [ROA96, 20].

Voltage is induced by the changes of air pressure, no change results in no voltage. Air

pressure higher or lower than “normal” creates positive or negative voltage,

respectively. The more the relative pressure changes, the more electrical current is

created. This is a continuous process: the voltage changes continuously its level

according to the continuous change of air pressure. At any given instant, a

distinguishable voltage level is defined. Therefore, analog signals are called continuous-

time signals. The level at a given instant is referred to as amplitude.

Air pressure has infinite precision as to how much it moves. Voltage is able to map the

pressure accordingly (quality depends on the microphone), with infinite precision: it has

a continuous range of amplitude levels. When the flow of voltage is fed into a

loudspeaker, its membrane moves very similar to the original change of air pressure.

This analogy gives the analog domain its name [ROA96, 20].

2.1.2 Converting to Digital

A computer cannot handle continuous signals - only sequences of values are possible.

The process of converting a continuous signal to a discrete sequences of values is done

by sampling: in short intervals (e.g. every 1/44100 second), the level of the current is

measured. As continuous time is split up into short intervals at which is sampled,

sampling does a discretization of time. The number of intervals per time is called

Wavelets in real time digital audio processing

 - 4 -

sample rate and usually specified in Hz. One sampled value is called a sample.

Generally, the sampling process of an audio signal with a suff icient sample rate does not

introduce errors. More details on the sampling process will be presented in chapter 2.2.

As a computer can only handle finite numbers, the value of a sample needs to be

represented by numbers: each measured value is assigned a number; high voltage a high

number, low voltage a low number. Common range of numbers is e.g. –32768 to

+32767 that can be represented by 2 bytes on a computer1. As the analog signal is

continuous, there exist many levels in between the numbers, so the level is rounded in

order to correspond to a number. This assignment level-to-number is called

quantization2. Quantization introduces loss of information: analog audio has a specific

amplitude at a given time, whereas the sampled values only occur in steps of discrete

numbers. Otherwise said, one sampled amplitude level corresponds to infinite analog

levels.

To summarize: transferring audio data from the analog to the digital domain requires

discretization of time and of amplitude – sampling and quantization.

2.1.3 Digital Domain

Once the sound has been sampled, its representation is a sequence of discrete amplitude

values, which can be stored and processed by the computer. The resulting flow of

digital samples is a discrete signal.

The first consumer product which used digital audio data was the CD. It uses a

sampling frequency of 44100 samples per second, 16bit PCM coded samples in stereo.

Digital signals can be stored and copied without loss of quality. While this is important

for producers and convenient for consumers, it presents a problem for other parts of the

music industry – performers, music distributors, and vendors assume large loss of turn

over because of unlicensed copying of CDs and digitally compressed music files

[THO99].

1 corresponding to 16bit PCM data as used by the audio CD
2 Quantization also requires division or multiplication of the level values to normalize them.

2 Basic Concepts

 - 5 -

2.1.4 Decibels

Decibel3 (dB) is a unit to measure the power (level) of a signal relative to a reference

power. Usually, the reference power is the threshold of human hearing. Decibel values

are logarithmic (as opposed to linear levels), approximating the relative human

perception of loudness [KIE97, 21]4. Decibel values are also used as measurement for a

range of levels of power, which is called the dynamic range. Humans have a dynamic

range of approximately 125dB: 0dB are hardly heard, 125dB is the limit to pain

[ROA96, 40].

2.1.5 Filters

In general, the term filter means any operation on a signal [ROA96, 185]. In signal

processing, however, filters usually denote an algorithm or device that alters frequencies

of the signal. For example, an equalizer can be realized with a filter that attenuates and

ampli fies the frequencies as desired.

Two special filter types are low-pass and high-pass filters. Low-pass filters let all

frequencies (in the pass band) pass that are below a cut-off frequency, whereas the

remaining frequency components (in the stop band) are removed from the signal. High-

pass filters work the vice versa: their pass band is above the cut-off fr equency [ROA96,

187]. Added to the cut-off fr equency, other parameters characterize a low-pass or high-

pass filter. An ideal filter exactly separates pass band and stop band. In practice,

however, filters are far from ideal5: the transition band is where the frequency response

changes from pass band to stop band (or vice versa for high-pass filters). The steepness

is usually indicated in dB/octave. Generally, more steepness requires more effort i.e.

computation time for digital filters. The gain of a filter is the relative attenuation (or

boost) it provides between stop band and pass band.

Filters are visualized as a plot of their frequency response, in the dimensions frequency

versus amplitude as can be seen in Fig. 1. It shows a low pass filter. Usually, as it is

done in the figure, the sample rate is normalized to 1. The frequency response extends

3 1/10 of one bel
4 This is not very precise, but demonstrates the point. The subjective “ felt” loudness depends on many

other aspects, e.g. the frequency.
5 Ideal filters have an infinite impulse response (IIR), and cannot be implemented therefore.

Wavelets in real time digital audio processing

 - 6 -

to 0.5 as this is the Nyquist Limit (see below). This filter’s cut off fr equency is at about

0.2. At a sampling rate of 44100Hz, this corresponds to 44100Hz*0.2=8820Hz.

Fig. 1: A low pass filter frequency response

Other special filter types include band-pass (letting through a coherent range of

frequencies) and band-reject filters (or notch filter – the inverse of band-pass filter).

2.2 AD-DA Conversion

2.2.1 The Sampling Theorem

The Sampling Theorem (Shannon and Rabe, 1939) is central for digital audio: having a

band-limited signal with bandwidth B, it can fully be reconstructed by the sequence of

its samples, if and only if the samples are taken with sampling frequency at least 2B. In

other words, if a signal is sampled at sample rate f, a signal can be reconstructed

perfectly when the signal’s bandwidth is at most f/2. This highest frequency for a given

sample rate is called the Nyquist6 limit.

Frequencies higher than the Nyquist limit cause aliasing (foldover) effects: these

frequencies “ fold” into the frequency range below the Nyquist limit . This results in

frequency content in the sampled signal, which is not part of the original signal [KIE97,

29].

6 after the physicist Harry Nyquist (1889-1976) [KIE97, 26]

2 Basic Concepts

 - 7 -

Aliasing is a serious problem for digital signal processing: in contrast to noise, which

covers many frequencies at once, aliasing occurs at certain, folded, frequencies. The ear

is more sensible to single frequency components than to a noise floor; aliasing is

perceived more than quantization noise.

Considering the Sampling Theorem is not only important for the sampling process: any

processing on sampled data must not exceed the Nyquist limit. E.g. when creating

sounds in the digital domain, their inherent harmonics can exceed the Nyquist Limit and

cause aliasing.

2.2.2 AD Conversion

The conversion from analog to digital domain is done by Analog-to-Digital Converters

(ADC, spoken “A-D-C”). Input is an analog signal, and the ADC transforms it into an

equivalent digital, sampled, discrete representation. Most commonly found are ADC’s

which output a sequence of digital encoded samples: voltages are quantized to a linear

range of digital values. Other types, li ke logarithmic scale converters, exist, but are not

very common anymore.

The main requirement of the ADC is, that the digital representation reflects the original

signal as closely as possible.

To reduce aliasing, a low pass filter needs to be applied to the analog signal before the

sampling process: it reduces the signal’s bandwidth so that it contains only frequencies

below the Nyquist limit. Although this anti-aliasing filter effectively removes aliasing

effects, it introduces new problems: analog filters do not have linear phase – the signal

is non-linearly delayed. I.e. the delay is dependent on the frequency of the signal.

Especially high frequencies near the cut-off fr equency are delayed.

A solution is to move the filter in the digital domain. Good digital filters provide a much

more linear phase response than analog ones [ROA96, 42]. Besides that, digital filters

are cheaper to manufacture [KIE97, 31]. In order to use a digital anti-aliasing filter, the

analog signal is sampled at a higher sample rate than the target sample rate (typically a

factor of 4 or 8). The resulting signal is digitally filtered and downsampled. This

Wavelets in real time digital audio processing

 - 8 -

technique is called oversampling. It has been developed by Motorola. It will be seen

that oversampling has another nice property.

As noted in chapter 2.1.2on page 3, quantization introduces errors. These errors are

signal dependent. This dependency becomes obvious by looking at sampled silence: as

there is no signal, there is no quantization error [ROA96, 34]. Quantization errors create

quantization noise. Its level and type depends on the signal, the sample rate, the quality

of the ADC and of course, how many bits are used for one sample [ROA96, 36].

2.2.3 DA Conversion

The reverse process of sampling is done by the Digital-to-Analog Converter (DAC,

spoken “dack”). There are similar problems like for the ADC. To recreate a smooth,

continuous signal from the discrete samples, the values between samples are

interpolated by a low pass filter following the digital-to-analog conversion [ROA96,

32].

Again, this filter may be moved to the digital domain by oversampling. This has the

additional advantage, that the quantization noise is effectively reduced – yielding an

improved signal-to-noise ratio. A four-times oversampled signal has 6dB less

quantization noise [ROA96, 42]. The resulting immense improvement of quality

suggests that it is the more important reason for oversampling.

2.2.4 Parameters for optimal Sampling

In order to most accurately capture sounds, the dynamic range and the frequency

bandwidth are significant parameters. The number of bits per sample is closely related

to the dynamic range of the digital signal. 1bit adds about 6dB dynamic range [OPS85,

447]. The frequency bandwidth is determined by the sample rate.

Audible frequency range is from about 20Hz to 20KHz7. Taking this into account, a

sampling frequency of 40KHz is the minimum to sample the entire audible frequency

7 Some people are able to hear higher frequencies, and scientific experiments confirm the physiological

and subjective effects of frequencies above 22KHz [ROA96, 31].

2 Basic Concepts

 - 9 -

spectrum. In order to provide the human’s dynamic range of 125dB, about 21 bits per

sample are required.

This does not mean that higher values are useless: More bits decrease quantization

noise. Digital signals with frequencies near the Nyquist Limit are diff icult to handle for

ADC’s and DAC’s, so a higher sample rate gives better quality. And especially for

digital processing or synthesis, a “head room” is useful [ROA96, 31]. Therefore it can

be said that the more bits are used per sample and the higher the sample rate, the closer

the digital signal can represent real sounds.

However, sample rate and number of bits per sample influence directly the amount of

digital data produced. This is an important factor for the costs of storage. When audio

data is to be sent over a network, the bandwidth of the network connection has to taken

into account. Audio processing needs more computational power for higher-quality

audio data. Therefore, a “perfect” sample rate and bit resolution does not exist:

requirements and possibiliti es have to be considered.

The audio CD uses 16 bit sample resolution at 44.1KHz. This corresponds to a theoretic

dynamic range of 96dB (without oversampling), while having a frequency bandwidth of

22050Hz. When the CD has been developed in the early 1980’s, this met the

requirements for high-quality audio playback. The possibilit y of storing 74 minutes of

audio (approximately 172KB/s) on one disc was a satisfying limit . Today, 24bit/96KHz

systems are becoming popular and available. Their dynamic range (max. 144dB)

exceeds human perception, and they provide a good representation of high frequencies

(up to 48KHz). There is considerably more “headroom” for digital signal processing or

synthesis. Although this format needs 562.5KB/s, today’s costs for storage and

computational power are lower, and the demand for high-quality digital audio

processing is higher than ever.

On the other hand, not in all cases the entire audible range of human hearing needs to be

captured. Human speech, for example, only contains frequencies up to 3000Hz and

dynamic range is not crucial for the words to remain understandable. For digital

telephony (ISDN), a sampling rate of 8000Hz is used by default, with non-linear

Wavelets in real time digital audio processing

 - 10 -

quantization providing about 72dB8. This dramatically reduces the amount of audio data

that is transferred in time: ISDN uses only 62.5KB/s.

2.3 Analysis-Resynthesis

In the field of digital signal processing, the terms analysis and resynthesis stand for

conversion from the time domain into another domain and vice versa. Chapter 3

provides an introduction to the Fourier transform (FT) performs analysis to the

frequency domain and the corresponding resynthesis. The term resynthesis is used, as it

transfers back to the original domain. This is distinguished of synthesis, where data,

which do not originate in the time domain, are transformed to the time domain9.

Usually, the analysis algorithm is based on a mathematical transform; it consists of a

forward transform and its counterpart the inverse transform for analysis and

resynthesis, respectively. An important aspect of a pair of forward transform/inverse

transform is its ability to accurately restore the original signal when applied

successively. This is called the perfect reconstruction property.

For digital signal processing, transforms are powerful tools: modifications in another

domain provide new possibilities of altering the signal. A demonstrative example is a

way to implement an equalizer (as found on stereo systems) using the FT: after the

signal is transformed to the frequency domain, the levels of the frequencies can be

accessed directly and thus can be increased or decreased in order to amplify or attenuate

certain frequencies. The inverse transform recreates the original signal but with changed

frequency components.

Furthermore, analysis transforms provide indispensable possibilities for exploration of

and research on signals. There, resynthesis is not needed and the perfect reconstruction

property is not important.

8 ISDN samples are uLaw or aLaw encoded with 8 bits per sample. This logarithmic encoding has a

subjective dynamic range corresponding to 12bit samples linearly quantized.
9 This separation of the terms synthesis and resynthesis is not always done in literature. Sometimes,

synthesis stands for both.

3 The Short Time Fourier Transform

 - 11 -

3 The Short Time Fourier Transform

This chapter provides an introduction to the short time Fourier transform. This subject is

too large to be covered completely. Only aspects relevant to audio processing are

presented, further limited in respect to the following comparison with wavelets.

3.1 Overview

In the process of sampling, coded audio data are a sequence of samples, yielding a time-

amplitude function. This representation is called the time domain [KIE97, 367].

However, music is more than amplitude: one fundamental criterion is pitch. In this

context, pitch means the height of a played note, or more general, the frequency of a

sound. Every sound, also the most complex one, consists of frequencies. Sounds with

extreme frequency content are sine waves on one hand, consisting of exactly one

frequency, and white noise on the other hand, containing all frequencies “at once”.

The Fourier transform allows transforming from time domain to frequency domain and

vice versa (analysis/resynthesis). The frequency domain is in dimensions frequency

versus amplitude. After Fourier analysis, the amplitude (or power) of each frequency

band can be retrieved10. The inverse Fourier transform performs resynthesis from the

output of the forward transform. The transform is lossless, i.e. the frequency domain

contains the same information as the time domain, only in another representation.

Additionally, perfect reconstruction is possible: applying the forward and the inverse

transform successively results in exactly the original signal.

10 The forward FT also produces phase values, which are not regarded here.

Wavelets in real time digital audio processing

 - 12 -

Fig. 2: The Fourier transform

Fig. 2 demonstrates the Fourier transform:

a) a sine wave with low frequency (large period)

b) a second sine wave with higher frequency and less amplitude than a)

c) sum of a) and b).

d) spectrum plot of the output of the Fourier transform of c)

The latter shows the 2 frequency components of c) as well as their magnitude11 in the

frequency domain.

The mathematical foundation of this transform is a theory developed by Jean Baptiste

Fourier12. He proved that any stationary signal can be represented as an infinite sum of

sine waves, each having a specific amplitude and phase [ROA96, 545]. Each sine wave

represents one frequency, which can be derived from the period. The amplitude of a

specific sine wave represents the amount of that frequency in the signal. For spectral

analysis of audio data, the phase of the sine wave is not very important: the ear cannot

11 “magnitude” is a term for the amplitude of frequency
12 French mathematician (1768-1830)

3 The Short Time Fourier Transform

 - 13 -

hear phase13 [ROA96, 19]. For resynthesis, all the sine waves, each at their specific

amplitude and phase, are added. This results in the original signal.

The original Fourier transform by Jean Baptiste Fourier cannot be applied directly to

digital audio data. There are some inherent problems, which will be discussed in the

following.

3.2 Discrete Analysis and Resynthesis

As digital audio data is discrete, a discrete version of the FT, the discrete FT (DFT) is

used, which transforms a discrete signal to a discrete frequency spectrum and vice

versa. It maintains the property of exact reconstruction. As opposed to the continuous

FT, it may be applied to a limited number of input samples, with the restriction that the

analyzed sequence is assumed to be a single period of a periodically repeating

waveform [EMB95, 27]. This is due to the periodic nature of the sine waves,

fundamental element of Fourier analysis.

For calculating the DFT on computers, various fast algorithms have been developed,

which are called fast Fourier transforms (FFT). The initial FFT has been discovered by

Cooley and Tukey in the 1960s [KIE97, 376]. Modern FFT computation algorithms

have a complexity of O(n log(n)) [FRJ00].

3.3 Frequency Bands

The output of the DFT can be interpreted as amplitudes of frequency bands14. Each

band has a fixed bandwidth and a center frequency – the main frequency it analyses. For

example, an analysis with 512 frequency bands at a sampling rate of 44100Hz means

that the bands are spaced in intervals of approximately 43Hz15. The first frequency

13 Under laboratory conditions, a 180 degree phase shift (polarity inversion) can be heard by some people

[ROA96, 19]
14 Frequency bands are also called bins [ROA96, 557].
15 (22050Hz) / (512 bands). 22050 is the bandwidth of the analyzed signal, it equals the Nyquist

frequency

Wavelets in real time digital audio processing

 - 14 -

band’s center frequency is at 0Hz16, the second at 43Hz, and so on. 43Hz is the

fundamental frequency – all other analyzed center frequencies are multiples of it.

While this property of equal-spaced bands may be useful for other applications of the

DFT like in physical analysis, it poses a problem for audio analysis: audio frequencies

are heard logarithmically. An interval of one octave always sounds like the same

interval, be it 2 low notes or 2 high notes spaced at one octave. Otherwise said, the

interval 100Hz to 200Hz sounds like the interval from 5000Hz to 10KHz. As an

example, when the DFT is used to extract the note (pitch) of a sound, there is the

problem that low frequencies have a low logarithmic resolution compared to the high

frequencies. With the 512-band analysis above, there is about one band corresponding

for the octave 30Hz to 60Hz, whereas the octave from 3000Hz to 6000Hz is represented

by 100 bands. So the pitch of a note at 50Hz cannot be detected, the only information

known from the analysis is that it lies in the second band and thus somewhere around

43Hz. For a high note, the pitch can be detected very well – there are 12 (half-) notes

per octave, so 100 bands are far more than needed to determine its exact pitch. One can

say, the DFT generates too littl e detail for low frequencies, while generating too much

detail for high frequencies in audio analysis.

3.4 Windowing

The DFT does not measure exactly the amplitude of the frequencies of one band.

Frequencies, which are not multiples of the fundamental frequency, cause frequency

leakage: in the example above of a 50Hz note, not only the 43Hz-band is affected, but

also neighbored bands have littl e frequency amplitude. Frequency leakage can be so

strong, that existing, low amplitude frequencies in a neighbored band are completely

hidden by the leakage amplitudes [ROA96, 1102].

Fig. 3 shows such a problem: the 2 mixed sine signals have both a littl e higher

frequency than in Fig. 2. In a) it is visible that the signal’s period does not match exactly

the length of the analyzed chunk – and thus the frequency components are not multiples

16 0Hz actually does not exist. The 0Hz band is called the DC offset [ROA96, 556] and determines an

offset to all amplitude values in the time domain [ROA96, 557].

3 The Short Time Fourier Transform

 - 15 -

of the fundamental frequency. The frequency domain plot b) shows that the 2

frequencies are not extracted exactly by Fourier analysis: frequency leakage occurs.

Fig. 3: Frequency leakage

The technique for dealing with the problem of frequency leakage is windowing. In the

time domain, the signal is enveloped in a window, which reduces the amplitude at the

edges [EMB95, 27]. Like this, there is no or littl e signal at the boundaries, providing a

smooth sequence, as you can see in Fig. 4: a) shows a typical window function, the

Hanning window [PTV94, 554]. In b), the signal from Fig. 4 is enveloped, “windowed”

by it. The Fourier analysis c) is not as clean as in Fig. 2, but substantially better than in

Fig. 3. For further details on the underlying theory of windowing, the reader is referred

to [OPS85, 272f.]

Wavelets in real time digital audio processing

 - 16 -

Fig. 4: The window, windowed signal and its frequency plot

A side effect of windowing is that the frequency spectrum is changed slightly. The

amplitude of frequencies is lowered: it can be seen that the windowed spectrum has

lower amplitudes than the original spectrum [ROA96, 1100]. The side effects depend on

the choice of the window function.

There are many different windows with different properties. Other windows like

Blackman and Hamming are commonly used, too. For more information on windows

and on their choice, see [PTV94, 554].

Applying the DFT to small windows is called the short time Fourier transform (STFT).

It was first introduced by D. Gabor in 1946, who established the name time-frequency

domain, as successive application of the STFT creates a time-varying frequency

spectrum [PPR91, 119].

In fact, by limiting the number of analyzed samples when applying the DFT, the data

are already windowed by an implicit square window [PTV94, 553]. In this thesis, the

term windowing is used for applying a non-square window to the signal.

3 The Short Time Fourier Transform

 - 17 -

When resynthesis is needed, it is impossible to exactly reproduce the original signal, as

it is affected by the window: the windowed signal will be generated. A common

technique to overcome this is to use overlapping chunks of data and mix the overlapped

resynthesized parts (overlap-and-add). With proper windows, this gives good results,

but increases processing demands (computation time): the more data is overlapped, the

more samples of the signal are analyzed twice [EMB95, 187]. In real time digital audio,

overlapping creates extra latency of the overlapped part.

3.5 Time/Frequency Uncertainty

In the frequency domain, time information is lost17: the frequency bands (as output by

the forward DFT) represent the frequency contents over the entire temporal interval,

which has been analyzed. In order to obtain frequency information for sampled, finite-

duration, time-varying signals, subsequent chunks of data are analyzed [ROA96, 550].

These chunks are small i n size, (typically 32-1024 samples [KIE97, 368]) and thus

represent a short time interval, which must be windowed to reduce the limitations of the

DFT. The resulting sequence of analyzed chunks is a time-varying spectrum [ROA96,

551].

By using the STFT, a time-frequency domain is obtained, though the time axis has

much lower resolution than the time domain. When high time resolution is necessary

(i.e. the exact time of an event needs to be known), the analyzed chunks must be very

short. However, this results in a coarse frequency spectrum, as with the STFT, the

number of frequency bands is proportional to the number of input samples18. To keep

the example, the event’s time will be known precisely, but its frequency content cannot

be determined accurately.

Conversely, if high frequency resolution is wished, time resolution is sacrificed, i.e. the

exact time of the event cannot be derived [ROA97, 557]. Analyzing time-varying

signals using the STFT is thus always a tradeoff of time resolution and frequency

resolution. As another example, let a 1 second audio signal with sampling rate 44100Hz

17 Actually, it is not lost, as it may be recreated by the corresponding resynthesis. More correct is to say,

time information is not directly accessible in the frequency domain.
18 the number of resulting frequency bands equals half the number of analyzed samples [ROA97, 559]

Wavelets in real time digital audio processing

 - 18 -

be analyzed using the STFT: for example, when a chunk size of 1024 samples (23ms19)

is used, the analyzed frequency spectrum has a resolution of 512 frequency bands. So,

the bands are spaced in intervals of 43Hz20. Thus, an event’s time can be determined

with accuracy of 23ms, whereas its frequency is known in steps of 43Hz. However, a

chunk size of 32 samples results in 0.7ms accuracy in time, but only 1378Hz in

frequency.

This coherency of time and frequency is called the uncertainty principle due to the

similarity to the research results of quantum physicists such as Werner Heisenberg in

early 20th century [ROA97, 557]. It is therefore sometimes referred to as Heisenberg’s

uncertainty principle. An exact mathematical derivation can be found in [VEK95, 76].

3.6 Spectral Representation

The output of the forward FT, the frequency spectrum, may be visualized in different

ways. For the STFT, time information has to be presented, too.

Fig. 5: Original signal in the time domain

19 (1024samples/s) / (44100Hz) * (1000ms / 1s)
20 see footnote 15 on page 13

3 The Short Time Fourier Transform

 - 19 -

Fig. 5 and Fig. 6 show 2 times the same signal: first as a plot of the time domain and

secondly the frequency domain. The time domain plots time vs. amplitude (volume),

whereas the frequency domain displays the frequency contents of the same signal:

frequency vs. amplitude of the frequency bands. The signal has been analyzed by a 1024

point DFT using a Hanning window. This type of representation is called discrete or

line spectrum. It is in the category of static plots – it displays a “sonic snapshot” or “still

image” of a sound [ROA96, 537]. A variation of this uses the power spectrum rather

than the amplitude spectrum: as defined in physics, the power spectrum is the square of

the amplitude spectrum. Basically, both look similar, but power plots better correspond

to human perception [ROA96, 539].

Fig. 6: Line spectrum in the frequency domain

Fig. 7 displays 2 variations of 3-dimensional plots of spectrum versus time, analyzed

using the STFT. Essentially, they display a sequence of frequency-amplitude plots. In

figure a), the time moves from left to right as it does in time domain representations.

Figure b) shows another view, time moving from back to front. A continuous 3d-display

of real time data is also referred to as waterfall display, since it shows the rising and

falli ng frequency energy in a fluid li ke depiction [ROA96, 541].

This representation is in the category of time-varying spectrum plots [ROA96, 537].

They allow following the evolution of the sound in time.

Wavelets in real time digital audio processing

 - 20 -

Fig. 7: 3d frequency plots

Fig. 8 shows the so-called spectrogram21 of the same signal as in Fig. 5. Like the 3

dimensional plot, it is in the category of time-varying plots: primarily, it displays time

vs. frequency. Additionally, the energy (or amplitude) of each band is represented as the

color. In this print, low energy is bright, high energy is dark. Thus, non-existing

frequency contents are white. Spectrograms are also called sonograms, and as they

where first used in speech analysis, they were first referred to as visible speech [ROA96,

541].

21 Created with a Blackman window, 64 frequency bands, on a logarithmic energy scale

3 The Short Time Fourier Transform

 - 21 -

Fig. 8: Spectrogram

The analyzed sound is the author saying the German words “nichts jedoch” . Every letter

can be “seen” very well , vocals and consonants are easy to distinguish. Also interesting

to note, the last “ch” obviously sounds different than the first “ch”22. In the sonogram,

many aspects of a sound can be seen, which cannot be seen in the time domain plot.

3.7 STFT for processing Musical Signals

The previous discussion showed the main aspects of Fourier analysis of audio data.

Here it will be evaluated how suited it is and its drawbacks for real time audio data.

3.7.1 Points of Strength

The STFT is a powerful tool to analyze the frequency spectrum of sound. It is possible

to obtain very detailed information of the frequency content of a signal.

It is a standard tool for signal processing: much research has been done, and many

enhancements have been developed. Fast computation algorithms are available which

use low computation time and can be applied in real time applications. Many musical

applications today use the Fourier transform for processing, also in professional

22 The first “ch” is a “shh”-sound produced in front of the mouth, the second one is a gargled noise

produced in the throat. It is visible that the first one is composed of a broad coherent range of
frequencies, thus resembling white noise, whereas the second one contains distinguishable frequency
components.

Wavelets in real time digital audio processing

 - 22 -

programs and hardware for high-quality processing. For example, the popular mp3 file

format23 uses a derivation24 of the DFT for high quality compression of digital audio

data [ISO93, 33].

3.7.2 Disadvantages

Despite the general suitabilit y for calculating the frequency spectrum, several

drawbacks for audio data, especially in real time, have been identified in the previous

chapters:

1. The analysis produces equal-spaced frequency bands. This does not correspond to

human perception of frequencies. To get acceptable frequency resolution in low

frequencies, high frequency resolution is “over-detailed” . Therefore, the FT is quite

ineff icient for this purpose [ROA96, 592].

2. Digital audio data are not periodic or stationary – in contrary, music, for example,

changes continuously. Then, application of the FT produces errors. The more

complicated transient phenomena occur in the analyzed signal, the greater the error

[ROA96, 593].

3. When the data are windowed to reduce errors, it is even more ineff icient, as

techniques as overlap-and-add need to be used.

4. For real time application of the STFT, a compromise of time and frequency

resolution must be accepted due to the uncertainty principle.

Many alternative spectrum analysis methods have been developed in order to overcome

the limitations of the FT approach. However, they all have their respective limitations,

and no general method overcomes all limit ations without introducing new ones. Rather,

they provide better solutions only in specific fields [ROA96, 594]. Especially, most of

them do not provide resynthesis, so they are not suitable for processing audio data.

Some of these alternative approaches are autoregression spectrum analysis, linear

predictive coding, Walsh functions, cochlegrams. For further reading, refer to [ROA96,

594f.].

23 MPEG 1 layer 3
24 Modified Discrete Cosine Transform

3 The Short Time Fourier Transform

 - 23 -

3.7.3 Conclusion

The STFT has been employed successfully in real time musical processing systems. Its

deep research provides good working solutions for the discussed problems. On the other

hand, its inherent problems make it seem more like a compromise than a suitable

solution in this field. Much research has been done aiming at new time frequency

representations, which overcome the time-frequency uncertainty. The following chapter

introduces the wavelet transform that is the outcome of relatively recent research in this

field.

Wavelets in real time digital audio processing

 - 24 -

4 The Wavelet Transform

4.1 Introduction

The pre-requisites of the wavelet’s history begin in 1910, when Alfred Haar, a German

mathematician, developed the now called Haar function and associated Haar matrix. It

is a special kind of matrix: by 2 operations (translation – compressing - and dilation -

shifting) on a “mother vector” , the matrix is constructed, all vectors being automatically

perpendicular to each other, due to the special “mother” vector. With this scheme it was

possible to create orthogonal matrices of any size, all vectors being based on one first

vector [STN96, 436]. This is the first known construction of a wavelet, while the term

wavelet has not been established at that time.

In the following, much research has been done to overcome and understand the

limitations of the FT. One main field of interest was to break up a complicated

phenomenon into many simple pieces [JAS94, 4]. In the 30’s, these were Littlewood-

Paley techniques, further developed in the 50’s and 60’s and leading to applications of

the Calderon-Zygmund theory. In the 70’s, atomic decompositions like in Hardy space

theory were widely used. G. Weiss and R. Coifman provided much research on these

atomic decompositions [GRA95, 4].

In 1980, A. Grossmann and J. Morlet broadly defined wavelets in the context of

quantum physics. Little later, J. Strömberg discovered the first orthogonal wavelets.

Later in the 80’s, Y. Meyer and other independent groups realized discrete calculations

of the Littlewood-Paley techniques, followed by the understanding, that this could be

effectively a substitute for Fourier techniques. It were Grossmann and Morlet who first

suggested the name “wavelets” instead of “ Littlewood-Paley theory” [JAS94, 4].

Later development in the 80’s and 90’s is marked by research of S. Mallat (introducing

multi resolution analysis), Y. Meyer (constructing the first non-trivial wavelets) and I.

Daubechies (creating compactly supported wavelets of f ixed regularity).

4 The Wavelet Transform

 - 25 -

4.2 Constant Q Filter Bank Analysis

The problem of equal spaced frequency bands with the FT has led to a variety of

constant Q filter bank analysis transforms. They have been used in audio research since

the late 1970s [ROA96, 578]. Examples are the auditory transform and the bounded-Q

frequency transform. Also the wavelet transform can be classified as a constant Q

technique.

Q can be seen as the quotient of width of a band to its center frequency (also referred to

as Äf / f with f=frequency). So with increasing frequency, the bandwidth becomes

greater in constant Q analysis. The analysis bands are thin for low frequencies and wide

for high frequencies. The FT transform, though, could be classified as a constant

bandwidth transform.

The length of the analysis window is also proportional to the frequency being analyzed:

long windows are used to analyze low frequencies, short windows for high frequencies

[ROA96, 579]. Like this, the uncertainty principle is not avoided, but it is used

effectively. Constant Q analysis trades off time versus frequency resolution “ inside” the

transform: temporal uncertainty but high frequency resolution in lower octaves (narrow

analysis bands) and high temporal resolution with low frequency resolution in higher

octaves. As short transients tend to contain high-frequency components, the constant Q

scheme allows good time localization of events.

The ear has a similar frequency response as a constant Q response, especially above

500Hz: the human auditory system performs a kind of f ilter bank analysis with

frequency-dependent width of bands. These bands are called critical bands [ROA96,

579].

Constant Q analysis can be performed by applying several low pass (and optionally high

pass) filters successively to a signal, or by applying several band pass filters to the same

signal. Other approaches exist, e.g. based on FFT algorithms to exploit the high

development status of FFT algorithms. While constant Q filter banks typically are less

eff icient in calculation, they do not need to do as many calculations: e.g. in order to

analyze 4 octaves with resolution of half notes (12 half notes per octave), a constant Q

Wavelets in real time digital audio processing

 - 26 -

analysis needs 48 bands (each one covering a half note frequency bandwidth), while

Fourier analysis needs e.g. 200 bands25 [ROA96, 581].

4.3 Filter Bank Wavelet Transform

In this chapter, the filter bank representation of the wavelet transform is explained. The

next chapter will provide background about wavelet functions, followed by the

connection back to filter banks.

This approach may appear as starting at the end, since historically the filter bank

representation came later than the continuous transform –the link has been made in the

late eighties [MAA00, 25], especially by S. Mallat. However, the reader is already

familiarized with filters and discrete signals, so this approach integrates better in the

logic of the thesis.

4.3.1 Digital Filters

Digital filters in the time domain are implemented using a technique called convolution.

A set of filter coefficients (or taps) is applied to the samples, by combining previous

samples with the coeff icients. One output sample is the sum of previous samples

multiplied with the filter coeff icients. The input sample is multiplied with the first filter

coeff icient, the previous input sample with the second filter coeff icient, and so on. The

sum of all products is the resulting, filtered, output sample. As a formula, convolution

looks like this (after [VEK95, 49]):

∑
−

=

=
1N

0i
ii-nn hxy

x: input signal
y: output signal (filtered)
h: filter coeff icients
N: number of f ilter coeff icients
n: index of sample

Equation 1: Convolution

Convolution can be written using matrix notation, where signals are written as vectors.

It can be written like this:

25 Approximate minimum amount needed to measure half-note pitches at around 20Hz to 320Hz.

4 The Wavelet Transform

 - 27 -

[]

=
+

++

ΜΟ

Λ
1n

n

1-n

01

01

01

2n1nn x

x

x

hh

hh

hh

yyy

Equation 2: Convolution in matrix representation

Empty spaces in the matrix stand for zeros. Only a filter with length 2 is shown. The

convolution matrix is a right circulant matrix, and, more specifically, a Toeplitz matrix

[VEK95, 34][STN96, 36], where each row is a right-shift of the previous row.

In order to retrieve the filter coeff icients, a wide variety of design methods exists, which

result in filters with different properties. For lowpass and highpass filters, steepness of

the transition band and flatness of passband and stopband are important design

restrictions and requirements. The reader is referred to [EMB95, 136f.], [STN96, 53f.],

[CRO98], [FIS99], and [OPS85] for further details on filter design.

4.3.2 Filter Banks

A filter bank is a set of f ilters, which split up the signal’s frequency components in

different signals, each with a subset of frequencies. The combined pass bands of the

filters cover the entire frequency range, so the filters are complementary. A simple filter

bank consists of one low pass filter and one high pass filter, both having a cut off

frequency at half the frequency bandwidth. Applying this filter bank to a signal results

in 2 new signals, one with the lower half frequencies and one with the upper half

frequencies. The FT can be considered as a special filter bank: it splits the signal into

many sine waves.

Often, and in the scope of this thesis, only filter banks with the described low pass and

high pass filters are used. A block diagram of this filter bank looks like this:

H0x

H1

y0

y1

X: input signal
H0, H1: low pass, high pass filters
y0, y1: output signals

Fig. 9: Simple filter bank

Wavelets in real time digital audio processing

 - 28 -

To construct a filter bank with more than 2 frequency bands, y0 could be filtered again

by 2 filters, one band pass filter and again one high pass filter which divide the bands up

again into 2 bands.

However, it is possible to further separate the frequency bands by only using the same

high pass and low pass filters. The bandwidth of y0 and y1 is both half the bandwidth of

the original signal – the other half has been removed by the filter. Following the

Sampling Theorem, they can be exactly represented by half the number of samples. And

exactly this is done with decimators26. They reduce a signal to have only half the

samples, by taking every 2nd sample. This is called downsampling, its operator is

usually indicated by ↓2. Decimating results in a signal with half the number of samples,

but they represent the same time interval as the original signal. Thus, the sample rate is

halved, too. The decimated output can then be filtered again with the same filters to

again split it up into lower and higher frequency contents.

A filter bank with 4 output bands could then be constructed following this block

diagram:

H0x

H1

H0

H1

v0,0

v0,1

H0

H1

v1,0

v1,1

↓2

↓2

v0y0

y1 v1

↓2

↓2

↓2

↓2

Fig. 10: 2-channel filter bank with 4 output bands

Thus, this type of f ilter bank works in successive stages. The number of f ilters per stage

is called a channel. It is possible to create a 3-channel filter bank with low pass, high

pass and band pass (for a range of frequencies between low pass and high pass filter). In

general, it is referred to M-channel filter banks. When the frequency bands are of equal

distribution, decimators can be used for downsampling, indicated by ↓M. An M-

decimator takes every M th sample and discards the rest. In the following, only 2-channel

filter banks are discussed.

26 The term “decimator” is not historically correct, but widely used. It originates of the Roman practice of

killi ng every 10th soldier of a defeated army, thus meaning “keep 9 out of 10” [VEK95, 66].

4 The Wavelet Transform

 - 29 -

4.3.3 Perfect Reconstruction

Under certain conditions, a filter bank is reversible, so that the original input can be

retrieved from the bands v. Reconstruction is very useful, the filter bank becomes a

forward transform/inverse transform pair.

Overall, it depends on the filters whether perfect reconstruction is possible. For

reconstruction, upsampling (expanding) must be done in order to undo the decimation.

This is done by inserting a zero after each sample. Additionally, 2 resynthesis filters F0

and F1 are needed to smooth out the zeros, reversing the analysis low pass and high pass

filters. The resulting samples are obtained by adding the outputs of the resynthesis

filters. This diagram shows a 2-channel filter bank, analysis followed by resynthesis

(after [STN96, 103]):

H0x

H1

↓2

↓2

v0y0

y1 v1

↑2

↑2

F0

F1

u0

u1 x

input analysis decimators expandors resynthesis output

Fig. 11: Analysis/resynthesis filter bank

There are many aspects in order to fulfill the perfect reconstruction property for a filter

bank. A selection is presented in the following.

H0

amplitude

frequency

H1

0 0.25 0.5

Fig. 12: overlapping lowpass and highpass filter responses (symbolized)

Wavelets in real time digital audio processing

 - 30 -

As discrete filters do not have an ideal cut off (i.e. they do have a transition band), the

low pass and high pass filters’ fr equency responses overlap: the low pass lets through

frequency components of the high pass band, conversely, the high pass filter lets

through low frequencies (see Fig. 12). This aspect, causes aliasing when downsampled

(as described in chapter 2.2.2 for ADC’s, which perform a special kind of

downsampling) [STN96, 103]. The solution for perfect reconstruction is to design the

reconstruction filters F0 and F1 in such a way that they cancel out the aliasing of the

analysis filters [STN96, 104].

As F0 and F1 therefore depend strongly on the analysis filters, it is convenient to

calculate them directly from H0 and H1. And indeed there exists a simple formula for

calculating them, the alternating signs pattern. F0 is derived from H1 by changing the

sign of each second filter coeff icient starting with the second. F1 is constructed

analogously, but sign changing starts with the first filter coeff icient.

a, b, cH0

p, q, r, s, tH1 -a, b, -c F1

F0p, -q, r, -s, t

(after [STN96, 105])

Fig. 13: alternating signs pattern

The diagram shows an example how to construct F0 and F1: a, b, c and p, q, r, s, t are the

coeff icients of H0 and H1, respectively. Obviously, obtaining the analysis filters from

given resynthesis filters works equally well .

The analysis filters also depend on each other. As said before, the frequency responses

must be complementary. And to fulfill perfect reconstruction in conjunction with the

reconstruction filters, still more conditions have to be met. It would exceed the scope of

this elaboration to cover the mathematics behind the perfect reconstruction condition.

For more detail on this, see [STN96, 107f.].

However, there is a method for deriving H1 from H0 when both filters are to have the

same length. It is called the alternating flip:

4 The Wavelet Transform

 - 31 -

a, b, c, dH0

d, -c, b, -aH1 -a, b, -c, d F1

F0d, c, b, a

(after [STN96, 110])

alternating
flip

order flip

Fig. 14: alternating flip pattern

The coeff icients of H1 are the reversed, sign changed coeff icients of H0. Still , the perfect

reconstruction condition and aliasing cancellation are imposed on the filters. Then, the

filters lead to an orthogonal filter bank [STN96, 109]. It is called orthogonal, as the

convolution matrix is orthogonal, i.e. the transpose is its inverse matrix [BRS89, 155].

There exists another easy way for obtaining H1: it is constructed from H0 using the

alternating signs pattern. These filters are called quadrature mirror filter27 (QMF) banks

[STN96, 109]. They lack some useful properties of orthogonal filter banks, so they are

not discussed further.

Orthogonality is not required for perfect reconstruction filter banks. The minimum

requirement is biorthogonality of forward transform matrix to its inverse counterpart.

Then, orthogonality is the special case where the filter bank is biorthogonal to itself.

Biorthogonal filter banks do not necessarily have the same length for H0 and H1. In this

thesis, the term “biorthogonal” is used for filter banks, which are not orthogonal.

4.3.4 Wavelet Filter Bank

Wavelet filter banks are perfect reconstruction filter banks. They appear in trees of

filters: in the first level, the frequency spectrum is divided into lower and higher half.

After downsampling, these can be split up again, up to a specified level. The wavelet

packet tree follows the model in Fig. 10: each downsampled filter output is split again

in 2 signals. Fig. 15 shows a 3-level decomposition [ALT96].

27 Also called conjugate mirror filters [COH92, 6]

Wavelets in real time digital audio processing

 - 32 -

x

v0,0,0

H0 , ↓2

H0 , ↓2

H0 , ↓2 H1 , ↓2 H1 , ↓2

H1 , ↓2

H0 , ↓2

v0,0,1 v0,1,0 v0,1,1

H1 , ↓2

v1,0,0

H0 , ↓2

H0 , ↓2 H1 , ↓2 H1 , ↓2

H1 , ↓2

H0 , ↓2

v1,0,1 v1,1,0 v1,1,1

Fig. 15: Wavelet packet tree

The second method is the wavelet tree. There, the high pass output is not separated

further. It is called the pyramid algorithm or Mallat’s algorithm [STN96, 414].

x

a2

H0 , ↓2

H0 , ↓2

H0 , ↓2 H1 , ↓2

H1 , ↓2

d2

H1 , ↓2

d1

d0

Level 0

Level 1

Level 2

Fig. 16: Wavelet tree

The wavelet tree has some important properties. The output signals that it produces are

called details d and approximations a, they are referred to as the wavelet coefficients.

The approximations are the decimated output of the low pass filter; conversely the

details come from high pass filtering. In each level, the approximations are separated

further, and only the approximations of the last level are kept. The numbers of levels

determines the number of resulting sets of detail coefficients. d0, the details of level 0,

have half the number of coefficients as the number of samples of the original signal, due

to decimation. Consequently, d1 has one-fourth the number of coefficients, and so on28.

When it is looked at the meaning of the coefficients, it will appear obvious that d0

contains the higher half of frequencies of the original signal, d1 contains the range of

28 Level ordering is reversed for denoting the order of calculation.

4 The Wavelet Transform

 - 33 -

frequencies from one fourth to half of the frequencies, etc. As these are octaves, the

wavelet tree effectively splits up the signal in octaves. The approximations of the last

level contain the remaining lower frequencies. As an example, at a sampling rate of

40KHz (Nyquist limit 20KHz), a 3-level decomposition (as in Fig. 16) gives d0 with

frequencies from 10KHz-20KHz, d1 from 5KHz-10KHz, d2 from 2500Hz-5000Hz, d3

from 1250Hz-2500Hz and approximations with range of 0Hz-1250Hz.

This looks like a constant-Q transform. Considering the time resolution of the

coeff icients, this can be confirmed. Each detail l evel has half the time resolution of the

previous detail l evel. The d0 coeff icients have a very high time resolution, half of the

original signal. Further down the tree, localization in time lowers, but, on the other

hand, the frequency bandwidth becomes smaller, resulting in better frequency

resolution. This is the discrete wavelet transform (DWT).

Level 0: d0

Level 1: d1

Level 2: d2

Level 2: a2

scale

 time

frequency

 time

b)a)

Fig. 17: Time- frequency and time- scale representation

In literature, often the dimension of the levels is not called “ frequency” ; rather, the

dimension is called scale (in the following chapter 4.4, it will be seen why). The output

of the WT is therefore a time-scale domain. Like a spectrogram, wavelet coeff icients

can be represented in a time-scale grid. Fig. 17 shows a comparison of the

representation of the STFT and the WT. Evangelista calls this representation of the WT

a cycle-octave time-frequency grid [PPR91, 121]. Each box stands for one output

coeff icient of the forward transform. Due to the different time and frequency resolution,

the boxes for each coeff icient do not have the same height and width for the WT. As in

the sonogram, the color of a box represents the magnitude of the coeff icient. It can be

well seen that the signal has a short transient in the third box of level 0 coeff icients.

Using the STFT, this transient cannot be located equally well i n time. On the other

Wavelets in real time digital audio processing

 - 34 -

hand, the sound, which led to the 2nd coefficient of level 2, can be analyzed

considerably more detailed for its frequency content than the STFT. However, the WT

cannot locate it precisely in time.

Generally, the number of levels is not limited, except the length of the signal. As each

level works on half the number of samples, at some point, there will not be any samples

anymore for decomposition.

4.3.5 Wavelet Resynthesis

As the filters for a wavelet filter bank need to be suitable for perfect reconstruction,

resynthesis is done as described in chapter 4.3.3 on page 29. The detail and

approximation coefficients are upsampled and filtered with the resynthesis filters. The

sum gives the approximation coefficients for the next level. The process is repeated

until level 0 has been resynthesized. The diagram in Fig. 18 shows the procedure.

x

a2

↑2, F0

d2

d1

d0

Level 2

Level 1

Level 0

↑2, F1

↑2, F0 ↑2, F1

↑2, F0 ↑2, F1

Fig. 18: Wavelet resynthesis

For a complete wavelet packet resynthesis, not all coefficients are needed. Therefore,

wavelet packet trees normally do not split up every level in high pass and low pass, but

only selected ones.

4.4 Wavelet Functions

This chapter is provided for completeness and for the better understanding of the theory

behind wavelets. It is not meant to be a mathematically complete coverage. Wavelet

4 The Wavelet Transform

 - 35 -

functions, and especially, the formulas, are not used in the work of this thesis, but they

may help to understand the idea. It will be shown that the filter bank scheme is

suff icient to calculate the wavelet transform.

4.4.1 Generalities

Wavelets are functions in continuous time that have special properties; usually the letter

ψ is used for the wavelet function. The functions need to disappear towards -∞ and ∞.

This leads to the term that wavelets are localized waves [STN96, xix]. Compact support

is not required but useful in many cases.

Another requirement is that the integral is zero29. Therefore, the wavelet needs to have

at least one change of sign, making its shape look like a small wave – the name “wave-

let” is based on this property [SCH97, 111], being the translation of the French

“ondelette” [JAS94, 6]. Wavelet functions are the analyzing grains, comparable to the

sine waves for the FT. Fig. 19 shows 2 wavelet functions: a) the Daubechies 2 wavelet

and b) the mexican hat30.

Fig. 19: Typical wavelet functions

4.4.2 The Continuous Wavelet Transform

Two important operations on the wavelet function create infinite variations: shifting

(moving in time, also called translation) and scaling (compressing in time, also called

dilation).

29 Or the sum, for discrete wavelet functions
30 See ch. 5.2 on p. 46 for a description of common wavelet famili es

Wavelets in real time digital audio processing

 - 36 -

The amount of shifting and scaling is indicated by the indices a (scaling) and s

(shifting):

=

a

t-s
ø

a
(t)ø sa

1
,

Equation 3: Wavelet basis [PPR91, 54]

ψa,s forms a basis, so that it is possible to represent all admissible functions with a linear

combination of the wavelet functions. They are normalized with 1/ a to preserve the

energy in the wavelet domain [VAL99, (3)]. The special feature of the wavelet basis is

that all the elements are derived from a single mother wavelet ψ [STN96, 3]. The

continuous wavelet transform (CWT) analyzes a given function f(t) with the basis

functions – the grains.

∫= dtttfsaF sa)()(),(,ψ

Equation 4: Forward CWT [STN96, 82]

Using the same function as compressed and shifted versions is called multiresolution.

F(a,s) are coeff icients with which it is possible to reconstruct the original signal f(t)31:

∫∫=
2,)(),(

1
)(

a

dads
tsaF

C
tf saψ ω

ω
ωψ

π dC ∫=
2

)(ˆ
2

ψ̂ : Fourier transform of ψ
Equation 5: Inverse CWT [STN96, 82]

It can be seen that the inverse CWT only exists if the term for the constant C exists, i.e.

the integral for C is finite. This can be guaranteed when the integral of ψ is 0 [STN96,

82].

The CWT as given in the equations is over-complete [STN96, 82]. The coeff icients

F(a,s) are redundant. It is suff icient to scale the wavelet in powers of 2, as is done in the

following discrete version.

The over-complete output of the CWT is commonly displayed as a scalogram, li ke in

Fig. 20.

31 For non-orthogonal wavelets, the inverse CWT uses the dual wavelet for resynthesis.

4 The Wavelet Transform

 - 37 -

Fig. 20: Time-domain function and its scalogram of the over-complete WT32

A scalogram is similar to the spectrogram, it displays the wavelet coeff icients in the

planes time vs. scale (or level). As for the spectrogram, a scalogram is usually based on

the energy of the wavelet coeff icients [CHA99, transformees/Transforms.html]. In the

picture, slightly more than 30 levels are analyzed. Singularities of the time-domain

function appear as cones – they have frequency contents in the entire spectrum. Finer

levels have good time resolution, so the peak of the cone (at finest level) indicates the

exact position of the singularity.

4.4.3 The Discrete Wavelet Transform

The discrete wavelet transform (DWT) is calculated analogously to the CWT. Here is

presented the dyadic DWT, which is scaled in powers of 2, resulting in the following

discrete transform [STN96, 432]:

)2(2 2
, ktj

j

kj −= ψψ ∫= dtttfb kjkj)()(,, ψ

Equation 6: Forward DWT

32 The picture has been taken from [CHA99]

Wavelets in real time digital audio processing

 - 38 -

The bj,k coeff icients are the wavelet coeff icients, analogous to the F(a,s) coeff icients.

The discrete inverse transform is straightly adding the translated, dilated wavelets,

weighted by the coeff icients33:

∑=
kj

kjkj tbtf
,

,,)()(ψ

Equation 7: inverse DWT [VAL99, (13)]

4.5 Connection of Filter Banks and Wavelet Functions

Normally in practice, and in particular in this thesis, wavelet functions are not used for

calculation of the DWT. And mostly, they are not even the starting point of

development of a wavelet. Rather, they are derived from the low pass and high pass

filters of the corresponding perfect reconstruction filter bank. For this, an auxili ary

function, the scaling function φ is introduced. It can be calculated using the dilation

equation:

∑
=

−=
N

k

ktkht
0

0)2()(2)(φφ
h0: low pass filter coeff icients
N: number of f ilter coeff icients
φ : scaling function

Equation 8: Dilation equation [STN96, 22]

As the dilation equation is recursive to itself, there is not always a solution for φ . The

scaling function is a function in continuous time, but is not likely to be continuous;

rather it may not be smooth and even contain jumps.

Finally, the wavelet function ψ can be calculated from the scaling function with the

wavelet equation:

∑
=

−=
N

k

ktkht
0

1)2()(2)(φψ
H1: high pass filter coeff icients
N: number of high pass filter coeff icients
ψ: wavelet function

Equation 9: Wavelet equation [STN96, 24]

It can be seen that once the scaling function is known, the mother wavelet can be

calculated directly – without recursion.

33 Also here, foot note 31 applies.

4 The Wavelet Transform

 - 39 -

The filter bank calculation scheme has the same output as the DWT – the detail

coeff icients are exactly the bj,k coeff icients calculated by the DWT. The scaling index j

becomes the level, whereas the translation index k corresponds to the time plane in the

filter bank. Therefore, it is possible to calculate the DWT entirely without wavelet

functions, as it is done with the tree-structured filter bank. Each level of the filter bank

corresponds to one scale of the wavelet. Consequently, when the filters are known, the

DWT can be computed exclusively with the filter bank. As the filter bank uses

decimation for the scaling, it is referred to as decimated DWT.

The wavelet depends on the high pass filter; therefore it is logical that it creates the

detail coeff icients for a decomposition using the CWT or DWT. On the other hand, the

scaling function corresponds to the low pass filter, so by applying it, the remaining

approximation coeff icients can be retrieved (analysis) or resynthesized.

To sum up, Fig. 21 shows a) scaling function, b) wavelet function, c), d), e) and f) the

filter coeff icients and g) the frequency responses of the analysis filters for the

Daubechies 2 wavelet. The Daubechies wavelet family has reached an enormous

importance and was first developed by Ingrid Daubechies. It is of order 2,

corresponding to 4 filter coeff icients34.

34 More information on Daubechies wavelets will be given in ch. 5.2.2 on p. 46.

Wavelets in real time digital audio processing

 - 40 -

Fig. 21: Daubechies 2 wavelet

4 The Wavelet Transform

 - 41 -

4.6 Properties of the Wavelet Transform

The WT is linear. This means that the transform of the sum of 2 signals equals the sum

of their transforms [PPR91, 59]. Furthermore, the transform conserves energy, i.e. the

energy of the signal equals the energy of the coeff icients [PPR91, 59]. The local

property of the grains allows localization of events of the original signal.

Wavelets approximate the signal. Thus the shape of the wavelet determines the

accuracy. One important aspect for the accuracy is the number of vanishing moments of

the wavelet function. A wavelet with p vanishing moments can approximate a

polynomial of order p-1 [STN96, 227]. Thus, the more vanishing moments, the more

“concentrated” the wavelet coeff icients describe the signal [CHE96, chapter 2].

Furthermore wavelets can be classified according to [MMO96, 6-62] and [JAS94, 20]:

• Whether the scaling function exists. This is true when the low pass filter is known

and Equation 8 has a solution.

• Whether filters exist (and thus the filter bank calculation scheme). Some wavelets

are specified as a function for the wavelet function, and not all of them can be

expressed as filters.

• Orthogonality: whether the filter bank is orthogonal or biorthogonal.

• Symmetry: Symmetric wavelet and scaling functions lead to respective symmetric

filters. Compactly supported orthogonal wavelets cannot be symmetric both for low

pass filter and high pass filter, as the alternating flip construction (Fig. 14)

demonstrates. However, orthogonal wavelets can be antisymmetric. Symmetric and

Antisymmetric filters are linear phase [STN96, 419].

• Compact support: Compactly supported scaling function and wavelet function lead

to finite filters (FIR). Non-compactly supported wavelets should have a fast decay

so that FIR filters can be approximated reasonably well .

• Smoothness: For many signal processing applications, smoothness is important, as

changed wavelet coeff icients shall result in a smooth output signal. Smoothness is

connected to the regularity of the wavelet function.

Wavelets in real time digital audio processing

 - 42 -

4.7 Wavelet Applications

Wavelets are used successfully for signal processing. Most prominent field is

compression of digital signals. Quite established are wavelet algorithms in digital image

processing. The abilit y of the WT to extract the main features (most important for the

eye) results in high compression without loosing much quality. The compression quality

showed to be superior to the usual JPEG compression, which is based on a FT. The FBI

adopted wavelet compression for their archive of digital fingerprint images [STN96,

364]. Also for video compression, wavelets are used successfully [VEK95, 431].

Noise reduction works well for similar reasons: low coeff icients are likely to contain

uncorrelated wide-spectrum noise. By setting coeff icients below a certain threshold to

0, the image can be denoised. This method works well for audio signals, too, and will be

explained in more detail i n chapter 7.6.

Other fields of signal processing, where the WT is eff icient, include detecting of

singularities or breaks, determining long-term evolution of the signal, and pattern-

recognition [MMO96, ch.4]

For sound processing, experiments have been done as described in [PPR91] and

[CHE96]. Also compression of sound has been successfully developed with good

results [STN96, 385].

Furthermore, wavelets can be used for linear algebra: [PTV94, 603f.] shows an

application for solving linear systems eff iciently by using the wavelet transform,

[MMO96, 4-48] demonstrates its application for fast multiplication of large matrices.

4.8 The WT for processing real-time Musical Signals

It has been anticipated that the WT provides some features especially useful for

processing musical signals.

Its multi resolution decomposition offers high temporal localization for high frequencies

while offering high frequency resolution for low frequencies. A high frequency event

(e.g. a cymbal crash) will be analyzed by many “ fast” , short, and high frequency

4 The Wavelet Transform

 - 43 -

wavelets. Low notes will be analyzed by “slow”, long, low frequency wavelets. Non-

stationary transients can be located and analyzed well . Generally, this fails with Fourier

analysis.

The logarithmic decomposition of the frequency bands resembles human perception of

frequencies. The WT offers logarithmically equal frequency bands (octaves) while the

FT has logarithmically low resolution for low frequencies. The WT adopts all

advantages of a constant-Q transform.

For real time processing, the WT does not need a special window to be applied, as it

decomposes the time by itself. So, the advantage of locality includes this advantage.

Many aspects depend on the analyzing wavelet35. Investigation is needed, which

wavelet is suitable for the specific application. Additionally, for computation of the

wavelet decomposition, it has to be decided how many levels (scales) are calculated.

The WT needs considerable more parameterization then the FT.

The WT can be calculated eff iciently with the pyramid filter bank algorithm. Although

it is of complexity O(n), computation is in general more time-consuming than

computing the FFT [ROA96, 589]. However, it is fast enough for real-time analysis and

resynthesis of audio data.

The WT creates octave-wide frequency bands. So a fine analysis is not possible. Using

more bands per level (scale) could be a solution, which has not been researched very

much in respect to eff icient computer based calculation. For many applications, the

bandwidth of the octaves is fine enough, but for e.g. pitch detecting algorithms, a finer

frequency resolution is needed.

In comparison with the FT, it can be said that the WT provides properties, which are

well adapted for analyzing and processing real time audio data.

35 or on the corresponding filters

Wavelets in real time digital audio processing

 - 44 -

5 Choosing a Wavelet for processing Musical Signals

Audio signals come in many different flavors. Classical music has different

characteristics than speech, and both are again different to pop music. This thesis

focuses on musical audio signals, without distinction of the characteristics. Speech

signals could be regarded as a subset, so most assumptions for musical signals remain

valid for speech signals. The idea is to develop algorithms that work well for many

kinds of audio signals in real time.

5.1 Requirements

5.1.1 Quality

The quality of wavelet decomposition especially depends on the abilit y of

approximating the signal with wavelets. When the applied wavelet does not resemble

the shape of the analyzed signal, the wavelet coeff icients will not extract the main

“ features” of the signal – resulting in many non-zero wavelet coeff icients to

approximate the signal. Thus, the better the analysis, the fewer significant wavelet

coeff icients result – they can be described as “concentrated” coeff icients [CHE96,

chapter 2, paragraph V].

Musical signals are always some kind of smooth wave, significantly smoother than

pictures [STN96, 437]. Pictures may have sharp edges, fine lines and high contrast.

Short filters corresponding to non-smooth wavelets li ke Daubechies 2 (see Fig. 21 on

page 40) have proven to approximate well pictures. Musical signals, however, lead to

the requirement of a suff iciently smooth wavelet, or in other words, a high regularity is

preferred.

The size of the transition band of low pass and high pass filters is an important factor,

too. Larger transition bands (i.e. low steepness), cause high overlapping of low pass and

high pass bands. So the output bands of the filter bank are not separated well , and

aliasing effects are enforced when the coeff icients are changed [DEW97, 1899].

Especially in applications where the wavelet coeff icients are related directly to

frequency (i.e. in pitch shifting), highly separated low pass and high pass frequency

5 Choosing a Wavelet for processing Musical Signals

 - 45 -

response is important. Recursive wavelet filters have been designed which greatly

decrease the transition band, however they need a special implementation and could not

be researched further for this thesis [MAL98, 253].

Furthermore, linear phase response is crucial for high quality audio filters. When the

filters do not have at least an approximate linear phase, certain frequencies are delayed

in the wavelet domain. The inverse transform undoes this phase distortion. However,

when the wavelet coeff icients are changed, unwanted modifications may occur to the

frequencies, which are “out of phase”. Linear phase response can be achieved by using

symmetric filters [STN96, 10].

Last, but not least, different wavelets have different temporal localization. Wavelets

with short compact support can localize an event’s time better than others. So, for exact

temporal analysis, a short wavelet is required, the faster decay the better. This conflicts

with the abilit y of separation of the frequency bands and smoothness – there, longer

filters provide better results [UYW99, 6].

5.1.2 Real-time Aspects

Especially in a real time environment, wavelet transforms lead to the requirement of a

suff iciently fast algorithm so that the processor is able to compute the forward and

inverse wavelet transform faster than the resulting chunk is played. In the example of

chunks of 23ms duration, any processing of the chunk may not take more than 23ms –

otherwise the flow of chunks will have breaks. The faster the processing has been

completed, the better, as the remaining processor time can be used for additional

processing on the audio signal, operating system tasks, etc. Additionally, some

headroom is required, so that the real-time environment operates stable at any time, also

when high peaks of processor usage occur. This headroom needs to be especially large

for operating systems with preemptive multitasking, as the system may interrupt the

chunk processing at any time for other tasks [EFF98, 5-13].

As the length of the filters directly affects computation time of analysis and resynthesis,

shorter filters are preferred. However, in general, more vanishing moments and smaller

transition bands lead to longer filters [STN96, 216]. As this is preferred for audio filters,

a reasonable compromise of f ilter length has to be found.

Wavelets in real time digital audio processing

 - 46 -

Computers normally process integer numbers faster than floating point numbers

[KIE97, 36]. It would be an idea to use one of the integer-based wavelet transforms, e.g.

following the procedure described in [CDS96] or [UYW99]. However, integer sample

values are not very well suited for high quality sound processing, resulting in round off

errors, unsmooth waves, causing alias effects. High-quality audio processing systems

can be assumed to work with signals in a floating point format, so using an integer

transform would be of littl e benefit, while reducing overall quality. All modern PCs are

equipped with fast floating point processors, so the performance impact is not very

important. Also, the increasing popularity of other programs using floating-point

calculations extensively (i.e. 3D games) plays a role for processor manufacturers to

develop high performance floating point processing units.

5.2 Common Wavelets and their Properties

Some selected wavelets and their properties are presented in this section. In general,

constructing a wavelet is not a very diff icult task. However, highly sophisticated

mathematics is involved when wavelets with special “good” properties are wished. All

wavelets presented here were designed with such specialties, so their construction has

not been trivial at all (maybe except Haar).

5.2.1 Haar Wavelet

The Haar wavelet is a special one. It has only 2 filter coeff icients, so a long transition

band is guaranteed. The wavelet function is a square wave; smooth audio signals cannot

be approximated well . It is the only wavelet that is at once symmetric and orthogonal

[STN96, 152]. Regarding computation speed, it is perfect for real-time processing.

However, the quality is not suff icient: any modification of wavelet coeff icients results

in strong aliasing.

5.2.2 Daubechies Wavelets

The compactly supported and orthogonal wavelets created by Ingrid Daubechies in the

late 1980’s gained much attention. They were one of the first to make discrete wavelet

analysis practicable [MMO96, 1-31].

5 Choosing a Wavelet for processing Musical Signals

 - 47 -

She constructed them by designing orthogonal filters with maximum flatness of the

frequency response at 0 and one half the sampling rate (maxflat filters) [STN96, 164].

So the restriction for design was the highest number of vanishing moments for a given

support width. For a given number of vanishing moments p, the filters have 2p

coeff icients. The minimum support constraint leads to maximum temporal resolution.

The resulting filters and wavelets are called Daubechies p or just Dp. For the special

case of p=1, the resulting wavelet is Haar [MMO96, 1-31].

Fig. 22: Daubechies wavelet family

Most Daubechies wavelets are not symmetric – in contrary, some are very asymmetric.

For small p>1, they are not smooth but still continuous. With increasing p, the wavelet

function becomes smoother [STN96, 163]. For example, the D2 wavelet has

singularities at the points p/2n (p and n integer) where it is left-differentiable but not

right-differentiable [PTV94, 598]. Due to the flatness, the filters do not separate the

frequency bands very well [DEW97, 1899]. The steepness of the filter’s frequency

response is proportional to the square root of 2p [STN96, 172].

Fig. 22 shows a) D3 wavelet, b) D6 wavelet, c) D20 wavelet. In d), the respective filter

responses are plotted. It can easily be seen that the higher the order p, the steeper the

transition curve.

Wavelets in real time digital audio processing

 - 48 -

5.2.3 Other Orthogon al Wavelets

Daubechies constructed a series of other orthogonal wavelets: “symmlets” have similar

good features like the Daubechies family (compact support, p vanishing moments) but

they were designed with the requirement to optimize symmetry and linear phase

[MAL98, 252]. Still , as it is impossible for orthogonal wavelets, they are not perfectly

symmetric.

Another family of wavelets (also constructed by I. Daubechies) are the so-called

Coiflets. She constructed them on request of R. Coifman36, who needed wavelets similar

to the Daubechies family, but with an additional constraint on the scaling function: not

only the wavelet function, but also the scaling function has to have p vanishing

moments [MMO96, 6-66]. This has the advantage that the approximation coeff icients

can be approximated by the signal samples themselves. However, the support, and

therefore the length of the filters, is longer (length of f ilter 6p instead of 2p37), so this

additional property costs eff iciency.

A special wavelet family is the one of Meyer wavelets. The wavelet and scaling

function are constructed in the frequency domain with an auxili ary function. Their

support is infinite, but still t he functions have a fast decay [MMO96, 6-69]. They are

infinitely differentiable; furthermore they are symmetric and orthogonal, but have no

vanishing moments. FIR Filters cannot be constructed, so a filter bank implementation

is not possible.

5.2.4 “ Crude” Wavelets

In [MMO96, 6-73], wavelets which lack many interesting properties are called “crude”:

the Morlet wavelet and the mexican hat38 both have an explicit expression for ψ, but a

scaling function cannot be constructed. They have neither compact support, nor

vanishing moments, and are not orthogonal. Due to these limitations, filters cannot be

36 Often in literature, the name leads to the wrong conclusion that these wavelets were constructed by

Coifman himself.
37 In [MAL98, 253], a number of 3p coeff icients is implicitly specified, though the filter of coiflet of

order p=5 has 30 coeff icients in Matlab.
38 The mexican hat can be seen in Fig. 19 on p.35.

5 Choosing a Wavelet for processing Musical Signals

 - 49 -

calculated, and only the forward CWT is possible. They are useful for mathematical

demonstrations, as the wavelet function exists as a formula.

5.2.5 Biorthogonal Wavelets

There exist a number of well -studied biorthogonal wavelets. The major advantage of

biorthogonal wavelets is the possibilit y to create symmetric transforms: both wavelet

and scaling function are symmetric. This requires an odd length of both analysis filters

[STN96, 111]. Biorthogonal wavelet functions and scaling functions are different for

analysis and resynthesis, so for a filter bank transform, 2 analysis filters and 2 different

resynthesis filters need to be used. Common practice for biorthogonal transforms is to

indicate the analysis wavelet and scaling function with ψ~ and φ~ , respectively.

It is apparent that the filters may have different properties for analysis and resynthesis.

Consequently, useful properties for analysis are designed into the analysis filters (e.g.

vanishing moments) while the resynthesis filters may be designed in respect to useful

properties for reconstruction (e.g. regularity) [MMO96, 6-68].

Battle and Lemarié introduced biorthogonal wavelets based on polynomial splines. For

splines of degree m, the resulting wavelet function has m+1 vanishing moments

[MAL98, 248]. Unlike Daubechies wavelets, they are not compactly supported; finite

filters can only be approximated by cutting of at the edges. However, the wavelet

function has exponential decay, so reasonably truncating the filters does not introduce

much error [COH93, 4]. Polynomial spline wavelet functions can be specified explicitl y

in the frequency domain, and since they are polynomial splines, they are m-1 times

continuously differentiable, resulting in quite smooth wavelets. For odd m, these

wavelets are symmetric. An orthogonalization scheme allows making the Battle-

Lemarié family of f ilters orthogonal [MMO96, 6-71]. In short, spline wavelets provide

maximum regularity with symmetry and minimum support [STN96, 258].

Other biorthogonal wavelets are Binlets, also based on splines (proposed in [STN96,

217]). They are symmetric, have short support and the coeff icients are binary: all

Wavelets in real time digital audio processing

 - 50 -

coeff icients of a filter are integers divided by the same power of 2. This allows eff icient

implementation on computers – division by a power of 2 is “natural” for computers39.

5.3 Decision

The parameterization possibiliti es of the wavelet transform provide a high degree of

flexibilit y on its properties and performance. By fixing the wavelet and its parameters

for the transform used in the example applications, the flexibilit y of the wavelet

transform would be lost. It would degrade its potential; therefore no definitive choice

shall be made. For example, when high separation of the frequency bands is needed,

long filters with high demands on processing power are needed. By providing the length

of the filters as a parameter to the user, the quality can be adjusted with respect to the

performance of the computer. However, some decisions can be taken – mostly by

exclusion.

The demand for linear phase leads to symmetric biorthogonal wavelets. A high degree

of regularity and frequency band separation is preferred. On the other hand, temporal

resolution is not a major concern – steep filters are more important. Biorthogonal spline

wavelets provide all these properties. Studies of wavelet transforms for audio or audio-

like signals agree on this ([CHE96, ch. 2], [DEW97, 1899], [STN96, 258]).

Consequently, symmetric spline-based wavelets or Battle-Lemarié wavelets will be

used for the example applications. Other wavelets are included for comparison

purposes.

39 This is due to the internal binary representation of integers. Bit shift commands effectively divide by a

power of 2.

6 Computer-based Algorithm of the Wavelet Transform

 - 51 -

6 Computer-based Algorithm of the Wavelet Transform

This chapter outlines the implementation of the fast wavelet transform (FWT). The

functions are used in the example applications in chapter 7.

6.1 Algorithm

The most important at first: the filter bank calculation scheme of the wavelet transform

is the FWT ! So it is suff icient to implement the filter bank in order to have a fast

calculation. As its complexity is O(n), it is among the fastest algorithms.

6.1.1 General Algorithm

The filter bank is applied recursively: each level (or scale) requires exactly the same

algorithm. Furthermore, the high pass and low pass filters are the same for each level.

So there is one function, which applies the filter bank to one level. An outer function

successively calls this function for each level.

Each analysis level takes a set of input coeff icients or samples and produces one set of

detail coeff icients (details) and one set of approximation coeff icients (approximations).

The number of each set of coeff icients equals half the input coeff icients or samples. The

details are saved as output. The approximations are the new input for the next level. In

this implementation, the filter bank is iterated until only 2 details and approximations

are left – it is a nearly complete analysis. At the end of the decomposition, the overall

output of the analysis transform is a set of detail coeff icients for each level, plus the 2

approximations of the last level. As an example, when 1024 samples are analyzed, the

forward transform produces 9 details: the 0th level has 512 coeff icients, the 1st 256, and

so on.

The inverse transform works analogously. It is started from the last level. To the 2

details and 2 approximations the inverse filter bank is applied. The result is 4

approximations, which are applied again to the inverse filter bank, along with the details

of the before-last level. This scheme is repeated until the 0th set of coeff icients is

resynthesized.

Wavelets in real time digital audio processing

 - 52 -

6.1.2 Matrix Representation

In the following, the transforms are represented as matrices. As convention, upper case

letters are matrices, lower case letters are vectors. In general, the (vertical) vector x is

the input signal, ai are the approximations of level i , di the details of level i . Filters are

denoted as the (horizontal) vector of the filter, where an index 0 stands for low pass and

index 1 stands for high pass. Furthermore, h stands for an analysis filter, f for a

resynthesis filter. Square brackets are used to indicate a specific element of a vector,

numbering beginning with 0. So, h1[0] is the first analysis high pass filter coeff icient.

Filters have N elements, the last element is N-1. The index s is used for the level. The

original signal corresponds to the approximations of level “ -1” .

A subscript T stands for the transposed matrix or vector. Empty elements in a matrix

denote zeros.

6.1.3 Forward Transform

Following Fig. 16 on page 32, a one-level decomposition applies the low and high pass

filters to the input and decimates each output. As a step-by-step algorithm, it would look

like this:

Convolution matrix for filter h:

−
−−
−−−

=

Ο
Λ
Λ
Λ

1]h[N

2]h[N1]h[N

3]h[N2]h[N1]h[N

H

Decimation matrix U:

=

Ο

01

01

U

Approximations level 0:
() xH Ua 00 =

Details level 0:
() xH Ud 10 =

Approximations level s+1:
()s01s a H Ua =+

Details level s+1:
()s11s a H Ud =+

Equation 10: Generic forward transform

The convolution is not exactly li ke presented in Equation 1: the input signal is shifted

“up” by N-2. Effectively, this creates a delay of N-2 samples in the wavelet domain. As

this delay is frequency-independent (in contrast to phase distortion), there is no impact

on quality. The inverse transform undoes the delay.

6 Computer-based Algorithm of the Wavelet Transform

 - 53 -

Fortunately, analysis can be integrated into just one matrix for a complete one-level

decomposition. The first step to this is done by using the associativity of matrix

multiplication: H is multiplied with U first. Effectively, this deletes every second row.

An example with a filter of length 3:

==

Ο
Λh[2]

h[0]]1h[]2h[

]0h[]1h[]2h[

 H UH '

Equation 11: Decimated convolution matrix

Like this, decimation is done before convolution; it reduces the number of operations by

the half. The second step is to create one convolution matrix Hd by appending the high

pass convolution matrix below the low pass matrix. There will be only one output

vector, which is composed of the approximations and appended, the details. This is

called the direct filter bank matrix [STN96, 124.].

Direct form of the filter bank matrix:

=

'
1

'
0

d
H

H
H

Analysis level s:

sd

T

1s

1s a H
d

a
=

+

+

Equation 12: Forward transform with direct filter bank matrix

For an eff icient implementation of the direct matrix, the rows of '
0H are interleaved

with the rows of '
1H . After the first row of '

0H comes the first row of '
1H , then the

second row of '
0H , then second of '

1H , and so on. It is called the block filter bank

matrix Hb (it is in block Toeplitz form or a polyphase matrix in the time domain [STN96,

114]). The output vector is composed of the interleaved coeff icients of a0 and d0. The

reason for this change of order is that in the computer algorithm, one loop is suff icient

for calculating one approximation coeff icient and one detail coeff icient at once.

Additionally, the input data is processed quasi-linearly, resulting in high locality of

memory access. This optimizes performance as it favors the use of the fast cache

memory of the processor.

Wavelets in real time digital audio processing

 - 54 -

6.1.4 Inverse Transform

The inverse transform is based on Fig. 18 on page 34. Expansion is also integrated into

the inverse direct filter bank matrix (here by deleting every other column). The

derivation is analogous to derivation of Hd. The resulting transform looks like this:

Expanded convolution matrix:

=

ΟΜΜ

f[0]f[2]f[4]

f[1]f[3]

f[0]f[2]

f[1]

f[0]

F'

Direct form:
[]'1'

0d FFF =
Recomposition of level s:

=−

s

s
d1s d

a
Fa

Equation 13: Inverse transform with direct filter bank matrix

The implementation optimizes this again by calculating high pass and low pass in one

iteration of the convolution loop. For this, the columns of Fd are interleaved, yielding

the inverse polyphase matrix of the time domain.

It is interesting to note that Fd is the inverse matrix of Hd. For orthogonal transforms, the

inverse matrix is the transpose. And due to the construction of the inverse filters with

order flip, i.e. f[i]=h[N-1-i], it can easily be seen that Fd is the transpose of Hd. For

biorthogonal transforms (which are not orthogonal), Fd is biorthogonal to Hd and

therefore the inverse of Hd.

6.2 Implementation

Once the matrices are set up, the implementation is straightforward. For a one-level

decomposition and a one-level resynthesis there is each a function, which implements

the respective block Toeplitz matrix. In both functions the matrix is traversed in rows

from top to bottom. There is an outer loop for the columns and an inner loop for the

rows. The next paragraph reveals that several alternative functions have been created for

analysis and resynthesis, addressing the discussed problems.

6 Computer-based Algorithm of the Wavelet Transform

 - 55 -

For a complete analysis/resynthesis, these one-level functions are called iteratively for

each level – as described in paragraph 6.1.1 on p. 51.

A number of wavelet filters have been implemented: Haar, Daubechies, Spline

biorthogonal, Battle-Lemarié, Symmlets and Coiflets, most of them in different versions

with different number of f ilter coeff icients.

6.3 Problems and Solutions

6.3.1 Variable-length Arrays

The wavelet coeff icients have a different length for each level. Additionally, for most

extension schemes, this length depends on the filters. Furthermore, the number of levels

depends on the size of the chunks. It is inconvenient and requires some overhead to

create one array for each level. Also a dynamic creation of the arrays for each execution

of the transform is quite time consuming.

To address this problem, an own class is responsible for handling the variable length

arrays of the coeff icients. Internally, based on the number of input samples and length

of the filter, one large array is created. During analysis, the filter coeff icients are written

successively to this array: first the details level 0, then details level 1, etc. The

remaining approximation level is also written to the array, after all details. The start

index and length of each level is stored separately. For wavelet-domain filters and

recomposition, functions like getDetails(level, &count) provide fast access

to the coeff icients.

The complete array is never destroyed, so that new and delete operators do not

decrease performance. Only in cases where the array is too small (e.g. the filter length

has been increased), it is discarded and a new larger one is created.

6.3.2 Filter Coefficients

The filter coeff icients need to be provided to the transform functions. These are stored

in static arrays. For each wavelet, the low pass filter coeff icients are specified in an

Wavelets in real time digital audio processing

 - 56 -

array. For biorthogonal wavelets, the high pass coeff icients must be specified in a

separate array. These arrays are passed to the transform functions.

A list of all available wavelet filters is statically constructed which contains the name,

the different filter coeff icient arrays with their lengths, and whether it is orthogonal of

each wavelet. An initialization function calculates the high pass filters for orthogonal

filters with the alternating flip, and the inverse filters of all filters is calculated using the

alternating signs pattern. At last, all filters are flipped: As the convolution matrix always

uses the filters backwards (last coeff icient first), the reconstruction function can be

simpli fied due to this flipped storage.

Most filter coeff icients were calculated using the wfilters function of the wavelet

toolbox of Matlab. For Battle-Lemarié and spline filter coeff icients, the lemarie and

wspline functions of the Uvi_Wave toolbox for Matlab [SPG96] were used.

6.3.3 Different Length of Biorthogonal Filters

Biorthogonal transforms may have different length for low pass and high pass filter.

Handling this is diff icult to implement eff iciently: by using the optimized block

Toeplitz matrix, low pass and high pass filters are calculated in parallel. Different

lengths would require a significant amount of checks to be made in the inner loop of

calculation. For simplicity, biorthogonal filters are padded with zeros in order to have

equal length. This has a negative impact on performance (see paragraph 6.3.5). Further

optimization measures may address this point.

6.3.4 Boundary Problems

The presented matrices for analysis and resynthesis hide one aspect: how do they end?

Apparently, the convolution needs N input samples, but for the last input samples, there

are not N following samples. For example, to calculate the last coeff icient, convolution

needs N-2 input samples after the last input sample. These do not exist. Another view of

the same problem is with the wavelet functions: the first and last wavelet lap over

outside the original window of input data. To address this problem, several common

schemes exist which extend the input data (discussed in [STN96, 340], [MMO96, 6-47]

6 Computer-based Algorithm of the Wavelet Transform

 - 57 -

and [CHE96, ch. 2]). This is not an exhaustive list. However, the presented extension

schemes seem to be the most used in wavelet processing.

Circular convolution assumes the input vector to be symmetric. The input signal is

extended with the first few samples. It can be implemented efficiently, as the last rows

of the matrix just wrap around. The major drawback of this solution is that the time

information of the wavelet coefficients is inaccurate for the boundaries: modifying a

coefficient at the edge has an impact on the other edge when resynthesized. For real

time audio processing, this behavior is not acceptable. With small chunks and long

filters, it comes close to the periodic behavior of the STFT.

Zero padding extends the input signal with N-2 zeros at end and beginning. This causes

discontinuities at the borders. There are wavelet coefficients added, as the signal is

effectively enlarged. For an input signal of length M samples, the 0th level has (M+N-

1)/2 details. On reconstruction, the padded values are discarded.

Symmetric extension assumes the signal to continue symmetrically at the borders. For

this, the signal is mirrored at the boundaries. It does not create discontinuities at the

borders and yields relatively low error. Like with zero padding, there are wavelet

coefficients added.

Smooth padding extrapolates the samples at both boundaries. This is assumed to be

good working for smooth signals, like audio signals.

All presented schemes give perfect reconstruction when the wavelet coefficients are not

changed. The different types of errors only occur when the wavelet coefficients are

modified.

The extension scheme only has an impact on the wavelet coefficients at the boundaries.

The inner wavelet coefficients are the same with all extension schemes. Also, extension

only plays a role for analysis: on resynthesis, the eventually added paddings are

discarded.

Wavelets in real time digital audio processing

 - 58 -

In the implementation, the first 3 schemes are implemented as different analysis

functions. Additionally, a variation of the symmetric extension using a history has been

elaborated. The last N-2 samples and coeff icients of the previous chunk are stored in a

history object. These values are used as the extension of the left boundary in the next

chunk. A parameter controls which extension scheme is used. Unfortunately, the author

learned of the smooth padding scheme shortly before finishing this thesis. Therefore, it

could not be implemented anymore.

Experimental results favor symmetric extension and history extension as the best-suited

scheme from the implemented ones for musical signals: with different signals, they

create smaller errors of the boundary samples than with zero padding or circular

extension. It depends on the signal, which of the latter 2 schemes yields less error, but

the subjective impression is always better with zero padding – the clicks due to the

errors are less disturbing than with circular convolution. Also subjectively, symmetric

extension and history extension sound best. Interestingly, they produce nearly the same

amount of errors and sound equal.

For the circular extension scheme, the function provided in [PTV94, 597] has been

retaken. It has been used as a reference implementation. However, it can only handle

orthogonal wavelets and the length of the input vectors is restricted to be a power of 2.

Due to the bad quality of the circular extension, this function has not been revised for

biorthogonal wavelets and arbitrary length of input vector.

A “ real” extension could be done by delaying the signal: The last N-2 samples of the

current chunk are used as extension. The last N-2 samples of the previous chunk

become the first samples of the current chunk. The problem here is that extension needs

to be done at each scale of analysis – the input signal would only provide the extension

for the 0th level.

6.3.5 Performance

Like stated earlier, calculation speed of a real time filter is crucial for the performance

and possibiliti es of the entire real-time system. Therefore, an optimized version of an

analysis and a resynthesis function have been implemented. For the analysis function,

only the zero-padding scheme has been implemented. However, the same optimizations

6 Computer-based Algorithm of the Wavelet Transform

 - 59 -

can be applied to the other analysis functions. As resynthesis is the same for all

extension schemes (except for circular convolution), one optimized inverse function is

suff icient.

As a first optimization, all i ncrements are implemented with the “++” operator. A

“+2”operation is replaced by applying twice the “++” operator.

Secondly, the inner loop is cleaned: in the generic implementation, an if-command

checks whether the signal or the extension is taken as input. In the optimized version,

there are three outer loops instead of one; one for the left extension, one for the non-

extended signal and one for the right extension. This removes completely the inner if-

command. A littl e overhead is added for the 2 additional loop blocks. This is not

dramatic: e.g. for a chunk size of 1024 samples and a filter length N=20, a full

decomposition executes 23,360 times the inner loop block, while the entire

decomposition function is only called 9 times.

Furthermore, calculation of the filter coeff icient index is removed: the loop variable of

the inner loop is adjusted so that it corresponds exactly the filter coeff icient index. This

removes 2 additions per inner iteration.

Another optimization is to remove indexed array access: accessing large array elements

by an index has a negative impact on performance. Rather, the input signal is accessed

with a typed pointer - instead of increasing the index for the array, the pointer is

increased. This needs extra variables for the inner loop, but experiments confirm the

positive influence. The same applies to the output arrays. Due to their relatively small

array indexes, the filter arrays are still accessed with an index. As expected, tests with

pointers for the filters showed worse performance.

A test with unrolli ng the inner convolution loop did not have the desired effect: instead

of a for-loop, the inner convolution statements are repeatedly copied in a switch-

case element with fall -through. By the switch-variable it is possible to define where

the statements start and thus the number of calculated elements can is defined. So for

each inner iteration, one if-statement (for checking the for-loop condition) and one

Wavelets in real time digital audio processing

 - 60 -

conditional jump has been removed. But, unfortunately, this resulted in a slower

execution. The optimization of the compiler seems to work well for for-loops.

Benchmarks show the effect of these measures: on the test system40, with chunk size

1024 samples and filter length N=20, executing consecutively the generic forward and

inverse transform takes 2.97ms processor time, whereas the optimized functions do it in

2.21ms, a performance increase of about 25%. With a filter length of N=40, 6.25ms and

4.76ms are used, respectively, yielding an optimization of about 24%. These values are

approximate mean values: the processor usage varies from chunk to chunk of up to +/-

0.2ms, so an exact benchmark is impossible.

0
2
4
6
8

10
12
14
16

10 20 30 40 50 60 70 80

Length of filter

T
im

e
in

 m
s

Generic

Optimized

Fig. 23: Performance of the transform algorithm dependent on filter length

Fig. 23 ill ustrates the processor usage of the transform algorithm. The time is nearly

proportional to the length of the filter. This manifests the complexity of O(n) also in

respect to the filter length. The diagram does not reveal that the relative performance

gain remains approximately constant – at around 24%.

More performance gain can be obtained by hard coding the filter coeff icients and

unrolli ng the inner loop as demonstrated in [PTV94, 596]. Further improvements can be

made to handle biorthogonal wavelets: firstly, the already mentioned zero padding of

filters with different length may be replaced by eff icient handling of different lengths.

Secondly, the symmetric property can be used to optimize even more.

40 Intel Pentium II , 400MHz with 512KB second level cache.

7 Applications of Wavelets in Real Time Digital Audio

 - 61 -

7 Applications of Wavelets in Real Time Digital Audio

This chapter presents the program that has been written to use the wavelet transform for

real time audio processing.

7.1 Coding Style

The author has a strong programming background in Java. This leads to a Java-like

design of the C++ classes. The differences to standard C++ coding style are listed here.

7.1.1 Naming Conventions

As in Java, all names in the implementation are a concatenation of words, first letter of

each word capitalized. Class names start with a capital letter; fields and variables start in

lower case.

7.1.2 Interfaces

As C++ does not provide the concept of interfaces, they are implemented as abstract

base classes. By multiple inheritage, they are attached to other classes. In this

elaboration, these classes are called an interface. While this is not true in a C++ sense, it

is true for their function and usage.

7.1.3 Object Orientation

The entire framework is designed purely object oriented. To this extent, fields are

generally private or protected and get/set methods allow access to them.

7.2 The Audio Framework

A set of core classes has been designed to handle real time audio streams. In the

following, their main features are presented. Appendix A provides descriptions of all

classes and a class inheritance tree of the core classes can be found in Appendix B.

Wavelets in real time digital audio processing

 - 62 -

7.2.1 Audio Format

The audio framework uses exclusively linear floating-point samples. When data

originate from a different encoding (e.g. PCM), they have to be decoded prior to be used

in the audio streams.

Furthermore, audio data may come in several channels, e.g. stereo with 2 channels. The

implementation can handle any number of channels. Channels are stored in parallel

buffers. Interleaved samples (e.g. originating from audio files) are separated.

Another important parameter of the audio format is the sample rate. The framework

works well with any sample rate.

The class AudioFormat stores the information about number of channels and sample

rate. It also provides methods to transform a number of samples to ms and vice versa.

For example, this serves to calculate the memory requirements and playing time of a

buffer.

7.2.2 General Architecture

Streaming of audio data is implemented as a sequence of chunks of audio data. They are

managed by the class SampleBuffer. The different sources (interface AudioReader),

modifiers (interface AudioFilter) and destinations (interface AudioWriter) of the buffers

are linked to form a chain. Sample buffers from sources and modifiers are pulled,

buffers to destinations are pushed. In between is a synchronizer, which first pulls all

data from the streams and then pushes it to all writers (class AudioSynchronizer). The

timing reference is provided by a ticker, which fires an event when a new buffer needs

to be filled (interface TickProvider).

Audio Source
e.g. audio file

Modifier
e.g. denoiser Synchronizer

Destination
e.g. speaker

Ticker

Legend
 audio f low
 event f low
 audio pull
 audio push

Fig. 24: Audio streaming example

7 Applications of Wavelets in Real Time Digital Audio

 - 63 -

An example of such a chain is presented in Fig. 24. Its architecture plays a file, which is

modified using a denoiser. The audio flow arrows show the way of the audio data, push

and pull operations are marked as gray arrows. More examples can be found in

Appendix C.

The ticker plays a central role to synchronize the audio processing with time. It provides

a stable clock, which depends on the length of the sample buffers. An event, the tick, is

generated at regular intervals of the time of one sample buffer. A tick event is the signal

to start filli ng the next buffer. As the TickProvider class is an interface, virtually any

class may become a ticker. An useful class for a tick provider is for example the class

that outputs data to the soundcard: the ticks can be synchronized with the timing of the

soundcard, guaranteeing that no buffer arrives too late or comes too soon.

Once such a tick event arrives at the synchronizer, it initiates the pull chain: it asks the

module “before” to fill t he provided sample buffer. The asked modifier will ask its

previous module, and so on. The first element in a chain finally will fill t he passed

buffer. Then the chain is proceeded back, in direction of the audio flow, each module

filli ng or modifying the sample buffer. When the sample buffer arrives at the

synchronizer, it pushes it to the modules “after” it. In this case, it is only one module,

the speaker – on PCs mostly driven by a soundcard device.

One auxili ary class, AudioMixer, is provided. It does not really belong to the

framework’s core, but is useful in any implementation. However, it need not be used, it

is provided with the framework for convenience. It is the reference implementation for

an AudioReader that reads from several inputs and applies modifiers to the stream.

7.2.3 Extensions

The framework’s core classes only provide the interfaces and some implemented classes

like SoundBuffer. They do not include real functionality or chained components. All

sources, destinations and modifiers have to be implemented as independent

extensions41. This allows compili ng the extensions into dynamically loaded libraries,

41 Implementing the interfaces AudioDeviceReader, AudioFileReader, AudioDeviceWriter,

AudioFileWriter and AudioFilter.

Wavelets in real time digital audio processing

 - 64 -

opening the possibility to extend the audio framework with new extensions without

recompiling the main program. Loading of the extensions is not part of the core

framework. It has to be provided by the main program, which uses the framework.

An additional extension type exists: encoders and decoders. They have the task to

decode from a certain encoding to linear floating-point samples, and encode vice versa.

The source and destination extensions can query the available encoders and decoders.

7.2.4 Independence of the User Interface

The entire framework, and especially the extensions, is generally independent of a UI

and do not implement a user interface42. As many extensions (especially filters) may

need to be configured by the end user, an interface for parameters is defined. Each filter

implements some methods to query the parameters: number of parameters, and for each

parameter: name, value range, type of display (slider, checkbox, combo box). How the

parameters are displayed to the user depends on the UI. It would be possible to provide

all parameters in a console-based UI. Also, automation of parameters can be achieved

fairly easy. Furthermore, the filters can deliver feedback to the UI: when a filter

changed a parameter by itself, it can send a notification back, so that display of the

respective parameter can be updated. With this mechanism, informational parameters

are implemented: to the end user, no possibility is given to change this parameter. It

only displays a string. In this fashion, the statistics filter (see ch.7.4.6 on p.73) lets the

calculated statistics of the audio stream be displayed.

7.2.5 Flexibility

Flexibility has been an important aspect for the design of the framework. As noted

before, arbitrary sample rates and any number of channels can be used. No limits apply

to chaining the modules: audio flow can be split up, combined, interrupted, etc. Of

course, this depends also on a clean implementation of the extensions. The existence of

the extension mechanism itself also offers a high degree of flexibility.

42 Unless they provide graphical output, like the wavelet domain display filter (ch.7.4.3, p.70)

7 Applications of Wavelets in Real Time Digital Audio

 - 65 -

7.2.6 Performance

As the classes are used in real time, processor usage of the real time functions is to be

minimized. Where possible, operations and calculations were implemented in functions

that are not called in real time. E.g. temporary memory blocks are allocated once at

beginning of real time operation instead of allocating and deallocating during real time

usage. More measures to improve performance are detailed in the descriptions of the

extensions in chapter 7.3 on pp.67f.

7.2.7 Robustness

A major concern of a real time audio framework is its robustness. It must run stable

even in exceptional situations. The core system has not a significant impact on

robustness: as the actual implementation is done in the extensions, robustness is mostly

dependent on them. Chapter 7.3 on pp.67f. discusses the considerations on robustness

for the relevant extensions.

Programming errors, which could e.g. lead to null pointer exceptions or memory

leakage, are also crucial for robustness. Though, this is not specific to an

implementation of an audio framework. Thorough testing and memory checks were

made to minimize the probabilit y of remaining errors li ke these. Also, extensive error

handling is necessary for robustness and has been implemented as described below.

7.2.8 Error Handling

For consistent error handling, a set of C functions has been retaken from the author’s

work on the Studienarbeit [BOE99]. It provides centralized functions for outputting

trace, debug and error messages. All messages are classified with a level. It is

configurable, which levels cause a message or not. The output is also configurable: for

console applications, it may be output on the console. GUI applications can present a

dialog box in case of an error message and list other messages in a list box or similar.

Additionally, all messages may be logged to a file. Exceptions are not used to favor

portabilit y.

Wavelets in real time digital audio processing

 - 66 -

7.2.9 Portability

The entire framework and most extensions are written in respect to portabilit y to other

platforms. Use of standard C++ should make it fairly easy to use the audio framework

on other systems than Windows, where the framework has been developed and tested.

Though, there are 2 classes, which need system-dependent implementation: Lock and

Thread. They are declared as external in the core header file. To compile a program, an

implementation of these classes must be linked to it. As not all platforms support

threads, they must be implemented as dummy versions, which create an error when

used. Threads are not used in the core system.

Thread provides an encapsulation for the system’s mechanism for threads. Like this, an

extension, which is system-independent except for the need of threads, becomes

platform independent. Methods like run and terminate allow control of the thread.

The run method takes as parameter a class that implements the ThreadRunner

interface. ThreadRunner declares only one method: threadRun. It is called in the

context of the newly created thread. Once it is finished, the thread has terminated.

For thread synchronization, Lock allows exclusive execution of a portion of code for

only one thread at a time. Two methods, lock and unlock define the exclusive

region. Locks may be implemented with mutex’s or semaphores. Only with the use of

locks, an application can be made thread-safe. Consequently, it has been used

extensively in many classes.

Also one global function with system-dependent implementation is declared in the

audio framework: HighResolutionTime returns a counter with very high precision.

This can be used for performance measurements and benchmarks.

These system-dependent declarations are implemented for the Windows platform. The

Lock is implemented using a Windows-specific critical section.

HighResolutionTime returns a timer register of Pentium-class processors.

Windows disposes of a function that enables to query it. On non-Pentium class systems,

it simply returns 0.

7 Applications of Wavelets in Real Time Digital Audio

 - 67 -

7.3 Implemented Extensions

Here, the extensions of the framework are detailed. The “filters” – audio modifiers – are

presented in the next chapter, although they are also part of the extension framework.

Appendix A.3 lists descriptions of all extension classes.

7.3.1 Codecs

One codec extension is provided. It handles conversion from and to PCM audio data.

The number of bits per sample must be passed to the codec so that it knows how to

interpret PCM samples.

7.3.2 File IO

Two extensions handling files of the common format “Microsoft wave” are

implemented: WaveFileReader subclasses AudioFileReader and provides an

AudioReader which gathers the input audio from a file. Conversely, WaveFileWriter

(derives from AudioFileWriter) is an AudioWriter, which writes the pushed data to a

wave file. For format conversion, they use the codec extensions. Currently, only the

PCM codec is supported. This can be enhanced easily. The wave file reader and writer

are platform independent (although the file format originates on Windows).

7.3.3 Audio Devices

In order to play and record sounds, the 2 extensions DirectSoundWriter and

MMEReader exist. As soundcard access is highly platform-dependent, these work only

on Windows.

For device access, latency is a crucial factor for real time digital audio: the slower the

soundcard, respectively the more time it needs to process a chunk, the higher the latency

of the entire system. Real time behavior may only be achieved with total latency of

under some 100ms. Higher latency than 400ms results in a noticeable delay – e.g.

changing a parameter of a filter is audible later, which is very inconvenient. Other

components of the audio framework do not add significant latency43. Consequently, it

was the aim to provide minimum-latency access to the soundcard.

43 except when a delay is implemented by design

Wavelets in real time digital audio processing

 - 68 -

Another important aspect is stability: even a 10ms break of the flow of audio data

disturbs significantly (and destroys a recordings). So the soundcard must be accessed in

a way that minimizes the risk of unwanted breaks. Additionally, all exceptional

situations have to be handled cleanly. If the audio framework is too slow to push the

chunks in time to the DirectSoundWriter (buffer underrun), a good reaction has to be

implemented Conversely, pushing the chunks too fast (buffer overflow) must be

considered, too. Underruns and overflows exist in the same sense for the MMEReader.

Exception handling needs to minimize audible effects and let the system remain stable.

In both classes, a circular buffer is used for handling these exceptions: too many pushed

buffers overwrite old ones, so it results in a jump in playback. When the buffers arrive

too slowly, the circular buffer contains too little samples for playback and silence is

appended. For the MMEReader, underruns cause silence to be generated and overflows

(i.e. the chunks are not pulled fast enough) cause skipping of recorded audio data.

The extension names reflect the driver model they use: DirectSound is a relatively new

model to access the soundcard on a very low level basis. While being quite complicated

to implement, it rewards with low latency. The speed of the soundcard is supposed to be

used to the maximum extent. DirectSound, initially developed for game sound, evolved

continuously with the time. Meanwhile, DirectSound version 8 is about to be released.

However, the Windows NT platform only supports up to version 3, therefore in this

implementation, only features of version 3 have been used. In general however,

DirectSound offers lower latency on Windows 95, 98 or 2000. There, DirectSound

offers latency as low as 20ms.

For recording, a DirectSound architecture exists, but unfortunately only in version 5 and

later. Therefore, MME, the older driver model of Windows, is used. It dates back to the

times of Windows 3.1 and exists on all Windows platforms since then. Highly evolved

soundcard drivers provide good performance: with this implementation it is possible to

have latency down to 69ms.

Both DirectSoundWriter and MMEReader implement the AudioTickProvider interface.

This offers direct synchronization with the soundcard: for playback, a tick event is fired

7 Applications of Wavelets in Real Time Digital Audio

 - 69 -

when one sample buffer may be pushed. For recording, the event is fired every time

when the number of samples of one sample buffer has been recorded.

7.4 Implemented Filters

In this chapter, the term “ filters” does not necessarily stand for frequency modification:

it means an audio framework extension for modifying audio – implementing the

AudioFilter interface. Some of them are auxil iary filters that supported development of

this thesis.

The main filter extensions and their implementation are presented in detail i n chapters

7.6f. Appendix A.4 provides a list of all classes.

7.4.1 Wavelet Transform

These 2 filters, WTForwardFilter and WTinverseFilter encapsulate the wavelet classes

elaborated in chapter 6 on pp.51f. as filter extensions.

WTForwardFilter performs the forward wavelet transform on the current chunk. The

Parameters allow choosing a wavelet and the extension scheme. Furthermore, an

eventually existing optimized version can be selected. In order that following filters can

access the wavelet coeff icients, a special field in SampleBuffer is assigned a

WTFilterInfo instance, providing information about the effectuated transform and the

calculated coeff icients in a WaveletCoeffs object. Following filters, which need the

wavelet domain, can check this field; if it exists (i.e. not equal to NULL), they use the

wavelet coeff icients, nothing is done.

WTInverseFilter applies the inverse WT to the wavelet coeff icients, if existent. The

resulting time domain samples are written to the SampleBuffer. An information field

provides the DC offset difference: the last sample of the last buffer is compared to the

first sample of this buffer. The lower the difference, the smoother is the resulting

boundary. It serves as an estimator for quality: higher difference creates audible

discontinuities. To overcome the discontinuities at the boundaries, 2 special modes are

implemented. They shift the entire signal to compensate the border discontinuities.

Though not guaranteeing continuous 1st or higher derivatives, a significant improvement

Wavelets in real time digital audio processing

 - 70 -

of clicks at the boundaries can be achieved. However, as the samples are shifted up or

down, the DC offset is modified and therefore dynamic range decreased. This is

unacceptable for high-quality audio processing; consequently this feature is used for

experiments only.

7.4.2 Show Wavelet Function

Showing the wavelet function ψ is done by a simple trick: setting all wavelet

coefficients to zero, except one single coefficient, will result in the time-domain wavelet

function (the grain), created by the inverse transform. This filter allows controlling the

scale, temporal position and amplitude of the single non-zero coefficient. By adding a

time domain display filter (see ch.7.4.7, p.73) after the inverse WT, the wavelet function

can be seen and explored. Changing scale and time shows the effects of dilation and

translation.

The ShowWLFunctionFilter is an effective means to better understand wavelets and

their implementation as filter banks. Furthermore it serves as validation of the inverse

wavelet transform and the selected wavelet.

7.4.3 Wavelet Domain Display

This filter is specific to Windows platforms. A window is created which displays all

wavelet coefficients in the time vs. scale domain (see Fig. 25), also called the

scalogram44. The amplitude or power of a coefficient is represented as colors. As this is

done in real time, every modification of the wavelet coefficients can be monitored

visually. The extension schemes (see chapter 6.3.4 on p.56) and their behavior with

different wavelets can be compared intuitively. The window can be resized to any

wished size.

Many options of the WaveletDisplayFilter allow to control display and function.

Paddings can be shown optionally, and coloring can be based on absolute amplitude or

energy of the coefficients. The color mode parameter allows different color palettes to

be used: examples are gray values or fading from red to blue. A good result delivers a

color palette, which fades from blue colors for low coefficients over red to yellow.

44 more information in ch.4.3.4 on pp.31f.

7 Applications of Wavelets in Real Time Digital Audio

 - 71 -

Another parameter controls scaling of colors: e.g. when all coeff icients are quite low,

scaling the colors up improves visibilit y of the coeff icients. The “vertical scale”

parameter chooses the relative height of the different scales of the coeff icients’ scales. A

vertical scale parameter of 1 shows the constant-Q: every scale has the same height. The

other extreme value of this parameter, 2, shows linear frequency range for the scales,

each scale has double the height as the next scale.

Furthermore, multiple consecutive chunks can be shown at once with the “number of

chunks” parameter. 2 parameters control the speed of display: the first allows pausing a

specified number of chunks after display of a chunk. This slow motion mode allows

studying individual chunks in more detail . It is synchronized with the same parameter in

the time domain display (ch.7.4.7 on p.73). Like this, time domain and wavelet domain

can be compared eff iciently. The second speed control allows switching to

“synchronous” display: the window is painted while the chunk is processed. If this

parameter is switched off , a message is sent to Windows to initiate a repaint of the

display as processor time permits. The latter results in a slower display (i.e. intermediate

chunks cannot be seen), but only uses processor resources when available.

Fig. 25: Wavelet domain display filter (vertical scale=1.5)

Wavelets in real time digital audio processing

 - 72 -

7.4.4 Noise Generator

This filter adds white noise to the audio stream. Essentially, white noise consists of

uniformly distributed random values. They are retrieved by the C function rand(). A

parameter allows the choice of using directly the normalized random values or to create

gaussian noise: it has zero mean, unit variance and a gaussian (or normal) distribution

by using the Box-Muller method. The gaussian noise implementation was inspired by

[EMB95, 158]. A second parameter lets control the volume of added noise. The filter is

system-independent. It is used for validation and testing of the noise reduction filter

(chapter 7.6 on pp.78f.).

7.4.5 Difference Listener

For comparison of the original and modified audio signal (e.g. modified by the equalizer

filter), the difference of both signals can be used. The difference signal contains the

amount of samples that have been changed. The amplitude of the difference samples

represents the amount of change. This filter is used for 3 main applications:

Listening to the different signal can give instantaneous, intuitive information about the

applied modifications. Frequency content and amplitude can be estimated quickly.

Statistics on the difference signal provide important quantitative results. This can be

done, e.g. with the statistics filter explained in the next paragraph.

An additional usage of this filter is to reverse the effect of a filter: for example, the

difference of a low pass filter results in a high-pass filtered signal.

The implementation is done by 2 filters: DifferenceBeginFilter and

DifferenceEndFilter. The first takes a snapshot of the current audio stream. The

DifferenceEndFilter calculates the difference of the current signal and the snapshot.

Thus, all filters that are to be analyzed with the difference signal need to be applied in

between this pair. Both filters do not have any parameters and they are platform-

independent.

7 Applications of Wavelets in Real Time Digital Audio

 - 73 -

7.4.6 Statistics Filter

This platform-independent filter calculates constantly some statistical data on the audio

stream. They are provided as informational parameters and can be displayed by the

GUI. 4 values are calculated: minimum sample value, maximum sample value, mean

value (DC offset) and energy. An additional parameter lets the user control how often

the values are displayed.

The StatisticsFilter provides data that can be used for quantitative estimation of the

quality of extension filters (with the difference listener) or to validate signals, e.g. from

the noise generator.

7.4.7 Time Domain Display

A time domain representation of the signal is displayed by the TimeDisplayFilter in the

dimensions time vs. amplitude. Like for the wavelet domain display (chapter 7.4.3), a

separate window is opened – so it is also specific for the Windows platform. Most

parameters are analogous to the parameters of the wavelet domain display. Here, the

“vertical scale” parameter allows stretching/compressing the display on the vertical

axis. Pausing of chunks is synchronized with the wavelet domain display: when both

pause the same amount of chunks, they display exactly the same chunk(s). As it is

possible to display more chunks at once than the number of paused chunks, a scrolli ng

view of the waveform can be created.

The time domain display is needed to display the wavelet functions with the

ShowWLFunctionFilter described in chapter 7.4.2.

7.4.8 Miscellaneous Filters

2 filters are implemented which were only used for auxili ary purposes.

The DelayFilter adds an echo to the signal. Short portions are repeatedly added to the

signal, with decreasing volume. 2 parameters allow controlli ng length of the portion and

amount of attenuation for repeated portions. It has been the first developed filter and

was used for validation and support of development of the audio framework.

Wavelets in real time digital audio processing

 - 74 -

The BWLowpassFilter implements an IIR low pass filter by using the Butterworth filter

design. The implementation has been taken from [BAL98]. 3 parameters are offered:

gain, cut off fr equency and resonance. Due to its IIR design, this Butterworth filter has a

fairly high steepness. It showed to be helpful for visualizing the amount of separation of

the filter bands of the wavelet transform: frequency bands above the cut off fr equency

should contain zero or small wavelet coeff icients. Different wavelets can be compared

using the wavelet domain display (see ch. 7.4.3).

7.5 The GUI

A GUI has been developed for the Windows platform. It does not use all of the

framework’s possibiliti es: a simple chain with 2 readers and 2 writers is used. In-

between can be put any number of f ilters. A diagram of the chain can be seen in

Appendix C.1.

The flow of audio data is symbolized with arrows, as can be seen in the screenshot (Fig.

26). With a checkbox, the sources and destinations can be activated. A help button

provides basic instructions on how to use the GUI.

Fig. 26: Screenshot of the GUI

The screenshot shows an example of using the wavelet denoiser: noise is added to the

audio signal with the noise generator (ch.7.4.4). In the wavelet domain (wavelet filters,

ch.7.4.1), the signal is denoised using the denoise filter (see ch.7.6). The wavelet

domain is visualized with the wavelet domain display filter (ch.7.4.3), where the effect

of different denoising parameters can be followed visually. Finally, the entire set of

7 Applications of Wavelets in Real Time Digital Audio

 - 75 -

filters is surrounded by the difference listener (ch.7.4.5). This allows to hear the

difference signal of original and denoised signal. If denoising were perfect, the

difference signal should be complete silence. Any existing sound in the difference

signal corresponds to unwanted modifications done by the noise reduction filter. This

setup allows finding the right parameters for the denoiser eff iciently. A slightly different

setup, with the “Difference Listener Begin” filter applied after the noise generator,

would allow listening to the noise, which has been removed by the denoiser.

7.5.1 Soundcard IO

Audio data can be retrieved and played using the soundcard. The extensions

MMEReader and DirectSoundWriter are used for that. For the soundcard input, a slider

lets the user control the volume of the audio data that is

fed into the system. While running, the running time of

the respective reader or writer is displayed in

minutes:seconds:ms (see Fig. 27).

Internally, the soundcards are used in 16bit resolution, 44100Hz sample rate and in

stereo. Consequently, the entire application runs at 44100Hz, with 2 channels.

A setup dialog (see Fig. 28) lets the user

choose the soundcard (if several soundcards

are installed in the computer) and define the

buffer size. The buffer size determines

directly the latency. Furthermore, it displays

when buffer underruns or overflows occur.

The setup dialog is invoked by pressing on

the respective “Settings” button. The setup

dialogs for input and output have the same

layout and functionality.

The tick source (see ch.7.2.2 on p.62) is assigned dynamically: if available, the

soundcard output (DirectSoundWriter) is used, otherwise, the soundcard input

(MMEReader) is used.

Fig. 27: Soundcard input

Fig. 28: Soundcard setup dialog

Wavelets in real time digital audio processing

 - 76 -

By activating both soundcard input and soundcard output, an audio loop is created: the

signal that comes into the soundcard is immediately routed to the soundcard output,

with eventual processing in between. This corresponds to the behavior of a stand-alone

effects generator: it can be used for li ve presentations, recordings, etc. For example, if a

user wishes to copy a record to CD using a stand-alone CD recorder. Music from the

record shall be denoised using the noise reduction filter (see ch.7.6). The user would

connect the record player to the soundcard input, and the soundcard output to the CD

recorder. On the computer runs this application with soundcard in and out activated.

Like this, the CD recorder burns a CD with the denoised music.

7.5.2 File IO

To use a file as input, either exclusively or in addition to

soundcard input, a filename has to be provided in the

text field, and the file input checkbox has to be

activated. This feeds the audio data of the file into the

flow of the system. As for the soundcard input, a slider

lets the user control the volume. The “loop” checkbox lets the file be played repeatedly.

Fig. 29 shows an example: the file “dnbloop.wav” is played repeatedly with full

volume. The current playing position is 5 seconds and 712ms.

The file output works analogously: when a filename is entered in the text field,

activating it causes a wave file to be created to which is written continuously the output

of the system. When the file output is deactivated, the file is closed and can be used

further: e.g. one can enter the filename in the file input box and use it as input audio

stream, or it can be burned to a CD.

For file IO, the extensions WaveFileReader and WaveFileWriter are used (see ch.7.3.2,

p.67). Consequently, only audio files in the format Microsoft Wave are handled.

Furthermore, as the program uses exclusively 44100Hz sample rate, only files with this

sample rate are accepted as input; generated files will have this sample rate. Mono input

files are transformed into a stereo stream.

Fig. 29: File input

7 Applications of Wavelets in Real Time Digital Audio

 - 77 -

7.5.3 Filters

Any number of f ilters can be inserted in the audio flow. A list displays the integrated

filters. Internally, an AudioMixer class is used (see ch.7.2.2 on p.62). This class also

mixes the 2 input streams from soundcard and file input.

Buttons control the chain of f ilters: the “Add”

button presents a dialog, which contains all

filters, registered as an extension (Fig. 30). The

name of each filter is retrieved by querying the

filter object. Clicking on a filter name displays a

short description of the filter. Also the

description is provided by the filter itself.

Pressing “OK” appends the selected filter to the

list of f ilters. One filter type can be added any

number of times.

The ”Del” button removes a selected filter from the list. The filters are applied in the

order in which they appear in the list. To change the position of a filter, the up/down

buttons are used.

The “setup” button displays a dialog, which contains all parameters of the selected

filter. The dialog is created dynamically: the respective filter object is queried for the

attributes of the parameters. For each

parameter, the corresponding GUI element is

created: a slider, a checkbox, a combo box, or

only an informational field. Fig. 31 shows the

setup dialog for the “wavelet domain display”

filter, demonstrating the first three types of

GUI elements. Additionally, for each setup

dialog, a checkbox on top left lets control

whether the corresponding filter is active (this

is not a parameter of the filter). On top right of

Fig. 30: Add filter dialog

Fig. 31: A filter setup dialog

Wavelets in real time digital audio processing

 - 78 -

the dialog, the relative processor usage is displayed: it is calculated with the

HighResolutionTime function (see ch.7.2.9 on p.66).

As the dialogs are generated dynamically, several dialogs can be displayed at once, one

dialog for each filter.

7.6 Noise Reduction

7.6.1 Overview

Noise is an unwanted, often wideband sound, which is generally unwanted. It reduces

the dynamic range of a system. Many different types exist; correlated and uncorrelated

to the signal’s amplitude or its frequency, continuous “noise floor” or noise transients.

The most frequent is a wideband noise floor. It occurs in many elements of an electronic

audio system: analog circuits li ke ampli fiers, ADC’s and DAC’s add quantization noise,

tape recordings have “tape hiss” . Many elements like cables reduce the signal’s

amplitude, reducing signal-to-noise ratio (SNR). To compensate this, the signal needs to

be ampli fied, which then adds noise [EMB95, 158].

Wideband noise can be “filtered” by the ear, up to a certain degree. Humans can

concentrate on the non-noisy parts of the signal, and do not notice the noise floor.

However, in pauses, where only noise is audible, it is better noticed. Also, different

types of noise decrease perceptual quality. As noise reduces the signal-to-noise ratio, it

reduces overall fidelity. Consequently, noise is unwanted.

7.6.2 Conventional Noise Reduction

Much research has been done to reduce noise. Tape hiss45 can be lowered by using

special noise reduction systems like the ones developed by Dolby. They dynamically

compress the signal before recording. On playback, the signal is expanded to its original

amplitude distribution. The recorded signal on tape has a limited dynamic range, so the

low dynamic regions, where tape hiss occurs, are not used. However, these systems alter

45 A special kind of noise that originates on analog recordings on magnetic tapes.

7 Applications of Wavelets in Real Time Digital Audio

 - 79 -

slightly certain parts of the signal and can have hearable distortions sometimes [ROA96,

396].

Another way to reduce noise perception is a noise gate. It monitors the amplitude of the

signal. Once the signal’s amplitude falls below a certain threshold, the signal is muted

completely. The noise gate does not remove noise; it only eliminates the noisy pauses,

where noise is perceived especially well .

A common technical for digital reduction of noise is done by special filtering. At first,

the pure noise is analyzed. Its frequency response is used to construct a filter, which

removes the frequency components of the analyzed noise [EMB95, 158]. In this case,

where the frequency distribution is known, also FFT-based algorithms are very effective

[RKK00, 2], but have less applicabilit y on non-stationary parts of the signal. It is

diff icult to use these algorithms for real-time noise reduction: the frequency analysis can

only be done with a noise-only signal. When the type of noise changes, the filter needs

to be recalculated. Additionally, the filters also reduce frequency components of the

original signal that lie in the noise spectrum.

7.6.3 Wavelet-based Algorithm

Noise reduction using the wavelet transform has been initially researched by Donoho

[GRA95, 12]. Using the WT for denoising is superior compared to conventional

techniques explained above, because denoising is done in different scales with different

time resolution.

Two major wavelet-based denoising algorithms have been developed by Donoho: linear

denoising, where noise is assumed to consist of high frequency components. The

corresponding scales (the finer scales) are set to zero [RKK00, 2].

The second algorithm, non-linear denoising, or wavelet shrinkage, assumes noisy data

to have low energy in the wavelet domain. This corresponds with the abilit y of the

wavelet transform to extract the main (correlated) “ features” of a signal. Two variants

were developed by Donoho: hard thresholding sets all coeff icients below a certain

threshold to zero, maintaining all others. Soft thresholding also sets the low coeff icients

Wavelets in real time digital audio processing

 - 80 -

to zero, but reduces all other coefficients by the threshold. Like this, the wavelet

coefficients are smoother, but the energy of the signal is heavily modified [LGO95, 4].

Non-linear denoising proved to work well for many different types of signals: 1D

medical, 2D geophysical and synthetic aperture radar signals [LGO95, 1]. Images can

be denoised successfully, too. As non-linear denoising is dependent on the signal (i.e. it

does not remove anything when all coefficients are greater than the threshold), it is even

used in fields where not noise is to be removed: e.g. for removing blocking artifacts of

JPEG compressed images [LGO95, 1].

Non-linear denoising can remove many kinds of noise; it is not necessary to know the

type of noise as for conventional algorithms.

Many refinements of non-linear denoising have been developed. Most notably,

algorithms exist to find the optimal threshold. Other algorithms use a non-decimated

WT. For further information, the reader is referred to [LGO95], [RKK00], [COI94],

[GSB97], [MMO96, 6-82f.].

7.6.4 Implementation

The implementation is done as a filter extension in class DenoiseFilter. The 2 types of

non-linear denoising, soft and hard thresholding, can be chosen with a parameter. Other

parameters are the threshold, how many levels are to be denoised, and whether the

paddings are included for thresholding. The parameters allow flexible control about the

denoising process.

In tests it has been found out that denoising low levels is not very effective. It results in

phase distortions of lower frequencies, which cause discontinuities at the chunk borders.

These can be perceived as clicks. Additionally, denoising of lower scales did not

improve perceptual amount of noise reduction. Therefore, the number of levels to be

denoised can be chosen. Wavelet shrinkage of the first 5 levels showed to work well

with many kinds of musical signals.

The implementation of the non-linear noise reduction algorithm has been

straightforward: the wavelet coefficients are examined one after another. When its

7 Applications of Wavelets in Real Time Digital Audio

 - 81 -

absolute value falls below the threshold, it is set to zero. For soft thresholding,

additionally all other coeff icients are reduced by the threshold.

7.6.5 Results

In general, noise reduction gave good results. With low noise levels, denoising worked

very effective. The soft thresholding method showed to work well , hard thresholding

created audible artifacts. Many types of noise can be removed from many different

audio signals. The audio part of the accompanying CD-ROM presents some audible

examples how to denoise recordings (see appendix D.7 for more details).

Testing has been done with synthetic white gaussian noise created by the noise

generator filter (see ch.7.4.4 on p.72) and with real signals that have a significant

amount of noise. The accompanying CD-ROM contains some audible examples of

original pieces of music and their denoised version (see Appendix D).

Still , some problems occurred. The threshold parameter effectively controls the amount

of noise to be removed. With a suff icient high threshold, it is possible to remove also

high noise levels. However, a significant amount of the musical signal is removed, too,

especially high-frequency components tend to be affected.

Additionally, noise is not removed uniformly: with lower threshold levels, which do not

affect the signal much, spurious noise components remained. These do not correspond

to a noise floor – they are quite audible and sound grainy. Therefore, parameterization is

crucial, and a tradeoff between amount of removed noise and modification to the

original has to be done.

For quantitative estimation of eff iciency, selected pieces of music have been denoised

and an error estimation has been calculated. This method is described in [RKK00, 8],

and works only when the original signal is known. The error estimation is EE /ˆ , where

Ê is the square root of the energy of the difference of original signal and denoised

signal, and E is the square root of the energy of the added noise. The condition 1/ˆ <EE

guarantees successful removal of noise [RKK00, 8].

Wavelets in real time digital audio processing

 - 82 -

For all tests, a Battle-Lemarié wavelet has been used with 49 filter coeff icients. The

denoiser has been set to denoise the first 5 levels, paddings inclusive, using soft

thresholding. The piece of music46 has a wide frequency usage and some short

transients.

At first, the energy of pure noise at different amplitudes has been collected to calculate

E. Then, two series of measurements of Ê were done: in the first, the threshold has

been set to yield a minimum error47. Secondly, the threshold has been set by ear: where

the least noise was noticeable, with acceptable modification of the music.

Series 1: minimum error Series 2: threshold by ear Noise
amplitude48 threshold EE /ˆ threshold EE /ˆ
-37dB (1.4%) -58dB 0.956 -50dB 1.121
-34dB (2.0%) -50dB 0.977 -47dB 1.063
-32dB (2.5%) -50dB 0.921 -45dB 1.012
-30dB (3.2%) -51,5dB 0.896 -43.5dB 0.940
-27dB (4.5%) -44.5dB 0.840 -40dB 0.871

Table 1: Noise reduction measurements

The quantitative error estimation shows that the implemented algorithm is able to

remove successfully white gaussian noise in a real time environment – without

specifically adapting the algorithm to the type of noise. EE /ˆ stays below one in all

measurements in series 1, even for higher noise levels. However, when listening to the

denoised music from series 1, noise is still audible.

When the threshold is adjusted by ear, the error estimate is greater, sometimes even

above 1. Listening to the output of series 2, noise is effectively removed. However, also

music is removed, which explains the increased the error estimate. This also shows that

numbers are not suff icient for evaluating the performance of audio filters, li stening to

the output is always necessary, too.

46 Dnbloop.wav – on the CD-ROM in directory “Program”.
47 found by trial and error
48 the value in parenthesis gives the linear volume

7 Applications of Wavelets in Real Time Digital Audio

 - 83 -

7.7 Equalizing

7.7.1 Overview

An equalizer or spectrum shaper changes frequency power of selected bands. The term

originates from one of its first applications: to compensate irregularities of the playback

medium. For example, a concert hall with a resonant boom at 150Hz needs attenuation

at this frequency to compensate the hall ’s exaggeration of it [ROA96, 194]. 2 special

kinds of equalizers are widely used, e.g. in mixing consoles, ampli fiers or consumer hi-

fi products. A graphic equalizer has one control each for a frequency band. Most

graphic equalizers have a fixed Q49. The control allows attenuation or boosts of its

respective frequency band. A parametric equalizer allows changing the center

frequency of each frequency band. Some also offer adjustment of the gain and

bandwidth of the filter [ROA96, 194]. In the following, the term “equalizer” is used as

synonym for “graphic equalizer” .

7.7.2 Conventional Equalization

Digital equalization systems are conventionally built using a filter bank. Each filter of

the filter bank is a narrow band pass filter. The output of the filters is combined to give

the equalized signal [ROA96, 193].

7.7.3 Wavelet-based Algorithm

Even if using the wavelet transform for equalizing involves filter banks, it is a different

approach: the output of the filter bank is not used to form the output signal, rather, the

output of the inverse transform produces the equalized output. The WT is adequate for

wide band equalization, as it has constant-Q filter bands; each scale corresponds to one

frequency band [CHE96, ch.5].

The algorithm uses a set of factors, one for each scale. The wavelet coeff icients of each

scale are multiplied with the factor of the corresponding scale. A factor of 1 leaves the

coeff icients unchanged, lower values attenuate the scale’s coeff icients and higher values

49 see paragraph 4.2 on p.25

Wavelets in real time digital audio processing

 - 84 -

ampli fy it. As the scales correspond to frequency bands, the corresponding frequency

components of the signal are changed according to the factors.

7.7.4 Implementation

The wavelet equalizer is implemented as a filter extension in class EqualizerFilter. As

all of the wavelet filters, it needs to be surrounded by the wavelet filters (ch.7.4.1 on

p.69). With a parameter for each scale, the factors of the respective scale can be

modified.

It exists a different operating mode: the addition mode adds or subtracts a value per

scale from the coeff icients, instead of multiplying them. While not having a direct

musical application, it has been shown to be very useful for experimental research on

the wavelet domain. Applied to music, a slight increase of all coeff icients of a scale

results in added noise. When applied to silence, the pure sum of all wavelets of one

scale can be heard: depending on the used wavelet, more or less clean sounding tones

result. The scale determines the pitch of the tone, which is, not surprisingly, in intervals

of octaves between 2 scales.

7.7.5 Results

The equalizer filter works as expected. With a wavelet of good frequency band

separation and therefore a suff icient filter length, the amount of aliasing is very low.

The frequency bands of the scales can well be boosted or lowered. The equalizer can be

listened to in the third audio example (track 4) in the audio part of the accompanying

CD-ROM (see appendix D.7 for more details).

Two problems occur when the factors are set to extreme values, li ke setting some

factors to 0. Firstly, aliasing occurs. This originates in the non-perfect separation of the

frequency bands. The used 49-tap filter (Battle-Lemarié with 49 filter coeff icients)

creates very littl e aliasing compared to shorter wavelets, still it can be heard with these

extreme settings. Secondly, the boundaries do not match, especially when low scales are

changed heavily. The symmetric extension scheme improves the boundary errors

compared to circular or zero padding. But in all cases, the discontinuities at the

boundaries can be heard as littl e clicks when factors are set to extreme values.

7 Applications of Wavelets in Real Time Digital Audio

 - 85 -

For experiments on wavelets, this filter extension provides many applications. For

example, by setting all factors to 0 except one, the output of one single scale can be

heard. The addition mode provides material for new experiments, too. Like explained

above, the results of adding to or subtracting from the coefficients can be explored. The

uniformly arranged wavelets (when all wavelet coefficients of one scale are set to a

certain value, by applying the addition mode to a silent signal) provide conclusions

about the frequency of a scale of different wavelets.

Wavelets in real time digital audio processing

 - 86 -

8 Conclusion

This thesis analyzed the usage of the wavelet transform for real time digital audio. By

providing theoretical background and presenting important aspects that apply for using

wavelets for signal processing, it has been shown that wavelets are an efficient

technique of analysis, processing, and resynthesis of the time-scale representation.

The presented implementation is a suitable base for development of wavelet-based

processing in real time. The GUI and the realized extensions enable exploration and

further research on wavelets and the filter bank wavelet transform. The real time aspect

adds a new dimension to existent research on wavelets.

Denoising and graphical equalization have been successfully implemented as a wavelet-

domain filter. Further improvements are possible for future work to eliminate the side

effects. Especially the choice of the wavelet remains a critical aspect. Future research

should be directed on finding suitable wavelets with minimum phase distortion and

maximum separation of frequency bands to further eliminate aliasing. The clicks due to

the boundary problem (see ch. 6.3.4 on p.56) should be completely removed by using

the smooth padding scheme and eventually applying an overlap-and-add algorithm.

This thesis provides a rich base to continue the research on wavelet-based signal

processing in real time.

Bibliography

 - VII -

Bibliography

In this section, all referenced documents are listed. The documents marked with “CD”

can be found on the accompanying CD-ROM. See Appendix D for more details on the

CD-ROM.

ALT96
CD

Altmann, Joshua: Surfing the wavelets,
http://www.monash.edu.au/cmcm/wavelet/, 1996

BAL98
CD

baltrax@hotmail .com (author contacted, but no reply): Resonant low pass
filter design, http://www.harmony-
central.com/Computer/Programming/resonant-lp-filter.c, 1998

BOE99
CD

Bömers, Florian: Modem Access Server, unpublished Studienarbeit (study
thesis), Universität Mannheim, 1999

BRS89 Bronstein, Ilja N.: Taschenbuch der Mathematik, Verlag Harri Deutsch, 1989

CDS96
CD

Calderbank, A. R. / Daubechies, I. / Sweldens, W. / Boon-Lock, Y.:Wavelet
transforms that map integers to integers, http://cm.bell -
labs.com/who/wim/papers/integer.pdf, 1996

CHA99
CD

Chaplais, F.: A wavelet tour of signal processing by Stéphane Mallat – a
short presentation, http://cas.ensmp.fr/~chaplais/Wavetour_presentation/,
1999

CHE96
CD

Cheng, Corey: Wavelet Signal Processing of Digital Audio with
Applications in Electro-Acoustic Music,
http://www.eecs.umich.edu/~coreyc/thesis/thesis_html, 1996

COH92
CD

Cohen, Jack K.: Wavelets – A new orthogonal Basis,
http://www.cwp.mines.edu/wavelets/, 1992

COH93
CD

Cohen, Jack K.: Battle-Lemarié Wavelets,
http://www.cwp.mines.edu/wavelets/, 1993

COI94
CD

Coifman, Ronald: Adapted Waveform Analysis and Denoising,
ftp://pascal.math.yale.edu/pub/wavelets/papers/, 1994

CRO98
CD

Cross, Don: Time domain filtering techniques for digital audio,
http://www.intersrv.com/~dcross/timefilt .html, 1998

DEW97
CD

Deighan, Andrew / Watts, Doyle: Ground-roll suppression using the wavelet
transform, http://seg.org/publications/geoarchive/1997/nov-
dec/deighan.html, 1997

EFF98
CD

Effelsberg, Wolfgang: Lecture notes Multimedia-Technik, Universität
Mannheim, 1998

Wavelets in real time digital audio processing

 - VIII -

EMB95 Embree, Paul M.: C-Algorithms for Real-Time DSP, Prentice Hall PTR,
1995

FIS99
CD

Fisher, Tony: Interactive filter design, http://www-
users.cs.york.ac.uk/~fisher/mkfilter, 1999

FRJ00
CD

Frigo, Matteo / Johnson, Steven G.: The Fastest Fourier Transform in the
West, http://www.ff tw.org/, 2000

GRA95
CD

Graps, Amara: An introduction to wavelets,
http://www.amara.com/current/wavelet.html, 1995

GSB97
CD

Ghael, S. / Sayeed, A. / Baraniuk, R.: Improved Wavelet Denoising via
Empirical Wiener Filtering,
http://www.dsp.rice.edu/publications/pub/spie97_akira.ps.Z, 1997

ISO93
CD

ISO/IEC: Coding of moving pictures and associated audio for digital storage
media at up to about 1.5 mbit/s, part 3: audio. ISO/IEC 11172-3, first edition,
1993

JAS94
CD

Jawerth, B. / Sweldens, W.: An Overview of Wavelet based multi resolution
analysis, http://cm.bell -labs.com/who/wim/papers/papers.html, 1994

KIE97 Kientzle, Tim: A programmer’s guide to sound, Addison Wesley Developers
Press, 1st printing, 1997

LGO95
CD

Lang, M. / Guo, H. / Odegard, J. / Burrus, C.: Nonlinear processing of a shift
invariant DWT for noise reduction,
http://www.dsp.rice.edu/publications/pub/CML9503.ps.Z, 1995

MAA00
CD

Jansen, M.: Wavelet Thresholding and Noise reduction,
http://www.cs.kuleuven.ac.be/~maarten/publications/PhD/index.html, 2000

MAL98 Mallat, Stéphane: A wavelet tour of signal processing, Academic Press, 1998

MMO96
CD

Misiti , M. / Misiti , Y. / Oppenheim, G. / Poggi, J.: The Wavelet Toolbox for
use with Matlab, User’s guide of Matlab, version 1, 1996

OPS85 Oppenheim, A.V. / Schafer R.W.: Elaborazione numerica dei signali , Franco
Angeli Editore, Milano/Italy, 3rd edition, 1985

PPR91 De Poli , Giovanni / Piccialli , Aldo / Roads, Curtis: Representations of
musical signals, The MIT Press, 1991

PTV94
CD

Press, Willi am H. / Teukowsky, Saul A. / Vetterling, Willi am T. / Flannery,
Brian P.: Numerical Recipes in C, Cambridge University Press, 2nd printing,
1994

RKK00
CD

Roy, Manojit / Kumar, V. Ravi / Kulkarni, B.D.: Simple denoising algorithm
using the wavelet transform, sent by R. Kumar by email: ravi@che.ncl.res.in,
2000

Bibliography

 - IX -

ROA96 Roads, Curtis et al.: The computer music tutorial, The MIT Press, 1996

SCH97
CD

Scherer, Karl: Splines und Wavelets, Universität Bonn, 1997

SPG96
CD

Sanchez, S. / Prelcic, N. / Galan, S.: Uvi_Wave V3.0 Wavelet toolbox for
Matlab, ftp://ftp.tsc.uvigo.es/pub/Uvi_Wave/matlab/, 1996

STN96 Strang, Gilbert / Nguyen, Truong: Wavelets and filter banks, Wellesley-
Cambridge Press, 1996

THO99 Thorwirth, Niels.: Copyright protection for mp3 audio, unpublished master’s
thesis, Universität Mannheim, 1999

TOC98
CD

Torrence, Christopher / Compo, Gilbert P.: A practical guide to wavelet
analysis, Bulletin of the American Meteorological Society, Vol. 79, No. 1,
January 1998

UYW99
CD

Uytterhoeven, G. / Van Wulpen, F.: WAILI - Wavelets with Integer Lifting,
http://www.cs.kuleuven.ac.be/~wavelets/, 1999

VAL99
CD

Valens, C.: A really friendly guide to wavelets,
http://perso.wanadoo.fr/polyvalens/clemens/clemens.html, 1999

VEK95 Vetterli , Martin / Kovacevic, Jelena: Wavelets and Subband coding, Prentice
Hall PTR, 1995

Appendix A

- A-1 -

Appendix A - Class Description

Here, all classes that were implemented are shortly described. Inside a paragraph, they

are ordered by declared header file and logical coherency.

A.1 Wavelet classes

Name: WaveletCoeffs
Declared in: wavelets/wavelets.h
Child of: none
Description: Manages a set of wavelet coefficients in different levels/scales.

Name: WaveletTransform
Declared in: wavelets/wavelets.h
Child of: none
Description: Provides methods for calculating forward and inverse wavelet transform.

A.2 Framework Core Classes

Name: CFOURCC
Declared in: core/audioclasses.h
Child of: none
Description: Class for handling a four-letter code. It is used as identifier for various

types, like the encoding type.

Name: AudioDeviceFormat
Declared in: core/audioclasses.h
Child of: AudioFormat
Description: Base class for AudioFormat of audio devices. In addition to AudioFormat,

it has the attribute bits per sample.

Name: AudioFileFormat
Declared in: core/audioclasses.h
Child of: AudioDeviceFormat
Description: Base class for AudioFormat of files. It has additional attributes for file

type, file name extension, encoding, whether samples are signed
and whether samples are in little or big endian.

Wavelets in real time digital audio processing

- A-2 -

Name: AudioStream
Declared in: core/audioclasses.h
Child of: None
Description: Interface for an audiostream. It has attributes position and audio format.

Methods allow to open/close and start/stop the stream.

Name: AudioReader
Declared in: core/audioclasses.h
Child of: AudioStream
Description: An AudioStream from which can be read samples.

Name: AudioWriter
Declared in: core/audioclasses.h
Child of: AudioStream
Description: An AudioStream to which can be written samples.

Name: AudioExtension
Declared in: core/audioclasses.h
Child of: none
Description: Base interface for all extensions. It contains methods for retrieving

information of the extension like name, description and its author.

Name: AudioFile
Declared in: core/audioclasses.h
Child of: AudioExtension
Description: Base interface of an extension that handles audio files.

Name: AudioFileReader
Declared in: core/audioclasses.h
Child of: AudioFile, AudioReader
Description: Interface for an audio file reader. It is based on AudioFile and on

AudioReader.

Name: AudioFileWriter
Declared in: core/audioclasses.h
Child of: AudioFile, AudioWriter
Description: Interface for classes that write audio files. It is based on AudioFile and on

AudioWriter.

Name: AudioTickCallback
Declared in: core/audioclasses.h
Child of: none
Description: Interface for classes that receive events of a ticker.

Appendix A

- A-3 -

Name: AudioTickProvider
Declared in: core/audioclasses.h
Child of: none
Description: Interface for classes that provide ticks - that are tickers.

Name: AudioExtensionTickProvider
Declared in: core/audioclasses.h
Child of: AudioExtension, AudioTickProvider
Description: Interface for tick provider extensions.

Name: AudioMessageReceiver
Declared in: core/audioclasses.h
Child of: none
Description: Interface for classes that can receive audio messages. Audio messages are

currently only 2 integer values.

Name: AudioMessageSender
Declared in: core/audioclasses.h
Child of: none
Description: Interface for classes that send audio messages. Any number of

AudioMessageReceivers can register to receive the events.

Name: AudioDevice
Declared in: core/audioclasses.h
Child of: AudioExtension, AudioTickProvider, AudioMessageSender
Description: Interface for audio devices. It is based on AudioExtension.

Name: AudioDeviceReader
Declared in: core/audioclasses.h
Child of: AudioDevice, public AudioReader
Description: Interface for an audio device that reads audio data from the device. This

means, e.g. recording.

Name: AudioFilterCallback
Declared in: core/audioclasses.h
Child of: none
Description: Interface for classes that wish to receive events from AudioFilters. Like

this an audio filter can notify when a parameter changed.

Wavelets in real time digital audio processing

- A-4 -

Name: AudioFilter
Declared in: core/audioclasses.h
Child of: AudioExtension
Description: Interface for audio filter extensions. Audio filters have an audio format,

and the most important "work" method, where the actual processing of the
audio data is done.

Name: AudioCodec
Declared in: core/audioclasses.h
Child of: AudioExtension
Description: Interface for an extension that provides encoding/decoding capabilities.

Name: Lock
Declared in: core/audioclasses.h
Child of: none
Description: Interface for a class that provides thread synchronization. It needs a

system-dependent implementation.

Name: Thread
Declared in: core/audioclasses.h
Child of: none
Description: Interface for creating a thread and managing it. It can be stopped and the

priority can be changed.

Name: Clist
Declared in: core/audioutils.h
Child of: none
Description: Class that handles a list of elements of pointer type. Elements can be

added, deleted, moved, etc. Push and pop methods let it work as a stack.

Name: WinLock
Declared in: core/windows/winsynchro.h
Child of: Lock
Description: Implementation of the Lock interface for the Windows platform.

Name: WinThread
Declared in: core/windows/winsynchro.h
Child of: Thread
Description: Implementation of the Thread interface for the Windows platform.

Appendix A

- A-5 -

Name: AudioMixer
Declared in: audioimpl.h
Child of: AudioReader
Description: An AudioReader implementation that reads from any number of input

AudioReaders. The input streams are mixed. Any number of filter
extensions can be applied to the mixed stream.

Name: AudioSynchronizer
Declared in: audioimpl.h
Child of: AudioTickCallback
Description: Reference implementation of a synchronizer that reads data from an

AudioReader and writes data to any number of AudioWriters. On every
tick event, a chunk is read from the reader and written to the writers.

A.3 Framework Extensions

Name: PCMCodec
Declared in: codecs/pcmcodec.h
Child of: AudioCodec
Description: Generic implementation of a simple PCM codec. It converts PCM

samples to floating point samples.

Name: WaveFileReader
Declared in: fileio/wavefile.h
Child of: AudioFileReader
Description: Extension that reads Microsoft WAVE files. It implements the

AudioFileReader interface.

Name: WaveFileWriter
Declared in: fileio/wavefile.h
Child of: AudioFileWriter
Description: Extension that writes Microsoft WAVE files. It implements the

AudioFileWriter interface.

Name: DirectSoundWriter
Declared in: devices/windows/directsound.h
Child of: AudioDeviceWriter, ThreadRunner
Description: Device writer extension for DirectSound devices.

Wavelets in real time digital audio processing

- A-6 -

Name: MMEReader
Declared in: devices/windows/mmewave.h
Child of: AudioDeviceReader, ThreadRunner
Description: A device reader extension that uses MME for capturing audio data from

the sound card.

A.4 Filters

Name: EqualizerFilter
Declared in: filters/wlscale.h
Child of: AudioFilter
Description: A wide band graphical equalizer in the wavelet domain.

Name: ShowWLFunctionFilter
Declared in: filters/wlscale.h
Child of: AudioFilter
Description: Allows showing the wavelet function with a time domain display.

Name: DelayFilter
Declared in: filters/delays.h
Child of: AudioFilter
Description: Filter extension that adds a delay (echo) effect to the audio stream.

Name: DenoiseFilter
Declared in: filters/denoise.h
Child of: AudioFilter
Description: Filter extension that denoises the audio stream in the wavelet domain.

Name: BWLowpassFilter
Declared in: filters/lowpass.h
Child of: AudioFilter
Description: Filter extension that applies an IIR low pass filter to the audio stream. It

uses the Butterworth filter design method.

Name: NoiseFilter
Declared in: filters/quality.h
Child of: AudioFilter
Description: Adds white gaussian noise to the audio stream.

Name: DifferenceBeginFilter
Declared in: filters/quality.h
Child of: AudioFilter
Description: Takes a snapshot of the audio stream.

Appendix A

- A-7 -

Name: DifferenceEndFilter
Declared in: filters/quality.h
Child of: AudioFilter
Description: Uses the snapshot of DifferenceBeginFilter and calculates the difference

to the current stream.

Name: StatisticsFilter
Declared in: filters/quality.h
Child of: AudioFilter
Description: Provides some statistical data of the audio stream.

Name: WTFilterInfo
Declared in: filters/wlfilter.h
Child of: none
Description: This class is stored as WaveletInfo in the SampleBuffer to provide the

wavelet coefficients to following filter extensions.

Name: WTForwardFilter
Declared in: filters/wlfilter.h
Child of: AudioFilter
Description: Calculates the forward wavelet transform of the audio stream. The

wavelet coefficients are stored in an WTFilterInfo instance in the
SampleBuffer so that following filters can access the wavelet domain.

Name: WTInverseFilter
Declared in: filters/wlfilter.h
Child of: AudioFilter
Description: Applies the inverse transform to the wavelet coefficients stored in the

SampleBuffer.

Name: WaveletDisplayFilter
Declared in: filters/windows/wldisplay.h
Child of: AudioFilter
Description: Displays a scalogram of the wavelet filter coefficients. This filter

extension needs Windows.

Wavelets in real time digital audio processing

- A-8 -

Name: TimeDisplayFilter
Declared in: filters/windows/timedisplay.h
Child of: AudioFilter
Description: Shows a window that paints the audio stream in time vs. amplitude

planes. This filter extension is for Windows platforms.

A.5 Windows GUI

Name: StreamInfo
Declared in: wingui/winmain.h
Child of: none
Description: Base class for storing information about audio stream objects and their

visual representation.

Name: DeviceInfo
Declared in: wingui/winmain.h
Child of: StreamInfo, AudioMessageReceiver
Description: Base class for storing information about device objects and their visual

representation.

Name: DeviceReaderInfo
Declared in: wingui/winmain.h
Child of: DeviceInfo
Description: Class for storing information about device reader instances and their

visual representation.

Name: DeviceWriterInfo
Declared in: wingui/winmain.h
Child of: DeviceInfo
Description: Class for storing information about device writer instances and their

visual representation.

Name: FileInfo
Declared in: wingui/winmain.h
Child of: StreamInfo
Description: Base class for storing information about file reader/writer instances and

their visual representation.

Name: FileReaderInfo
Declared in: wingui/winmain.h
Child of: FileInfo
Description: Class for storing information about file reader instances and their visual

representation.

Appendix A

- A-9 -

Name: FileWriterInfo
Declared in: wingui/winmain.h
Child of: FileInfo
Description: Class for storing information about file writer instances and their visual

representation.

Name: FilterParamDescr
Declared in: wingui/winmain.h
Child of: none
Description: Informational class for one parameter of a filter extension.

Name: FilterParamList
Declared in: wingui/winmain.h
Child of: Clist
Description: A CList-based class for handling lists of parameters.

Name: FilterInfo
Declared in: wingui/winmain.h
Child of: AudioFilterCallback
Description: Class for storing information about filter extension instances and their

visual representation.

Name: FilterInfoList
Declared in: wingui/winmain.h
Child of: CList, FilterTimingCallback
Description: List of FilterInfo instances. The visual representation is handled also.

Appendix B

- B-1 -

Appendix B – Class Inheritance Trees

In this appendix, the most important interfaces and classes of the audio framework (i.e.

no extensions or the GUI program) are presented in inheritage trees. The diagrams use a

notation similar to UML. The included methods are a representative selection, they are

not exhaustive; especially utility methods and overridden methods are not included.

Wavelets in real time digital audio processing

- B-2 -

B.1 Core Interfaces and Classes

AudioFileWriter

setBitsPerSample
 getEncodingsCount
 getEncoding
setEncoding

AudioFileReader

setLooped
isLooped

AudioReader

read

AudioWriter

write
setAudioFormat

AudioFile

getAudioFileFormat
setFilename
getFilename
canSeek
seek
getFrameCount
skip

AudioTickProvider

Declaration below

AudioStream

getAudioFormat
open
close
isOpen
start
stop
isStarted
available
getFramePos

AudioDevice
getAudioDeviceFormat
setAudioDeviceFormat
 getDeviceCount
getDeviceName
setDevice
getDevice
getBufferCount
setBufferCount
getBufferSizeFrames
setBufferSizeFrames
getDeviceModuleInfo

AudioDeviceReader

AudioDeviceWriter

AudioExtension

Declaration below

AudioExtension

Declaration below

Legend

Interface

Implementation

B inherits from A

A

B

AudioFormat

getFrameRate
getChannelCount
frames2Bytes
bytes2Frames
frames2ms
ms2frames
getBytesPerSample

AudioFilter

getAudioFormat
setAudioFormat
work
getParameterCount
getParameterInfo
setParameterValue
getParameterValue
getFormattedParameterValue
 AudioFileFormat

getFileType
getExtension
getEncoding
isBigEndian
isSigned

AudioDeviceFormat

getBitsPerSample

AudioTickProvider

startTicker
stopTicker
setTickSize
getTickSize

AudioExtension

getExtensionName
getExtensionAuthor
getDescription

AudioTickCallback

ticked

AudioExtensionTickProvider

AudioCodec

encode
decode

SampleBuffer

getChannelCount
getSampleCount
makeSilence
copyChannel
addChannelToChannel
getBuffer
pushSubset
popSubset

CList

addElement
getCount
getElement
setElement
removeElement
indexOf
push
pop
isEmpty

Appendix B

- B-3 -

B.2 Platform-dependent Interfaces

Lock

lock
unlock

Thread

run
terminate
terminated
isRunning
sleep
setPriority
getPriority

Threadrunner

run

Legend

Interface

B.3 High-level Classes

AudioSynchronizer

start
stop
setTickSize
getTickSize
setReader
addWriter
removeWriter
setTickProvider

AudioMixer

addInput
removeInput
addFilter
removeFilter

AudioReader

Legend

Interface

Implementation

B inherits from A

A

B

AudioTickCallback

B.4 Windows Implementation

WinThread

Thread

Legend

Interface

Implementation

B inherits from A

A

B

WinLock

Lock

Appendix C

- C-1 -

Appendix C – Audio Framework Chains

Here, 2 audio chains are presented to show the possibilities of the audio framework.

C.1 Audio Chain of the GUI

WaveFileReader

MMEReader

AudioMixer

Any number of
filter extensions

WaveFileWriter

DirectSoundWriter

AudioSynchronizer

Legend
 audio f low
 Class instance

C.2 An example Audio Chain

Legend
 audio f low
 Class instance

MMEReader 1

MMEReader 2

AudioMixer 1

Denoiser

Audio-
Synchronizer

AudioMixer 2

Equalizer

AudioMixer 3

DirectSound-
Writer 1

Audio-
Synchronizer

DirectSound-
Writer 2

Lowpass
filter

WaveFileReader

Appendix D

- D-1 -

Appendix D – the CD-ROM

This thesis is accompanied by a CD-ROM. It contains the implemented program as

source and as executable files, some sound examples, this document in PDF format, the

bibliography documents (where available) and the necessary programs to view the files.

In the audio part, some audible presentations are provided.

The CD-ROM is created with the Joliet file system. This allows long filenames and can

be read on major operating systems. To incorporate both data and audio, it is a mixed

mode CD-ROM.

D.1 Directory “ Bibliography”

In this directory, there are all referenced documents, as far as they are available in

electronic format. The documents are placed in sub directories, which are named after

the abbreviation of the reference, as used in this thesis. The files are in the formats

PostScript (extension .ps), HTML (extension .html or .htm), PDF (extension .pdf) or

Microsoft Word (extension .doc). In the sub directories, a file “web.txt” or “email .txt”

(or both) contains the source URL or email address from where the document has been

obtained.

D.2 Directory “ Program”

The executable program for Windows can be found here, it is called “WaveletTest.exe”.

It runs on Windows 95 (with DirectX 3.0 or higher installed), Windows 98, Windows

NT 4 (with service pack 3 or higher) and Windows 2000. Also some audio files with the

extension .wav are in this directory. They can be used in the application.

D.3 Directory “ Readers”

Here, the applications for reading the various document types can be found. In the

respective sub directories, there are Adobe Acrobat Reader for PDF files, Microsoft

Internet Explorer 5 and Netscape Communicator 4.7 for HTML files and

Wavelets in real time digital audio processing

- D-2 -

GhostScript/GhostView for PostScript files. All these programs are for the Windows

platform and they are in English language.

D.4 Directory “ Source”

This directory contains all source files. They have the extension “ .h” for header files and

“ .cpp” for c++ source code. The “build” sub directory contains project and workspace

files for Microsoft Visual C++ version 6. In the “lib” directory, all i nterfaces and classes

of the audio framework, the extensions and the wavelet classes can be found. The

WinGUI directory contains the source code of the example application for Windows.

D.5 Directory “ Thesis”

In this directory, the thesis (this document) can be found in PDF, PostScript and Word

97 (or 2000) format. A sub directory contains the images of the document. The Word

document needs the image directory, as it reads the images from there.

D.6 Directory “ Unsorted Info”

This directory contains more documents found in the Internet that are related to

wavelets. Like for bibliography documents, a “web.txt” file references the origin.

D.7 Audio part

The audio part of the CD-ROM can be listened to with ordinary CD players or by using

a CD player program on the computer. Some examples demonstrate the usage and

sound of the implemented application. They are completely created with the application.

The first track is the CD-ROM part and should not be played back. Four tracks explain

some possibiliti es of the implemented program: the first example (track 2) uses the

denoiser to reduce the noise of a historic sonata recording. A more technical example is

track 3: denoising of artificially created noise is demonstrated as well as usage and

sound of the difference listener. The third example in track 4 explains the wavelet

equalizer filter extension and shows some of its capabiliti es. The combination of

Appendix D

- D-3 -

denoising and equalizing is presented in the last example (track 5): the quality of a

home recording is improved with the 2 filter extensions.

Ehrenwörtliche Erklärung

Ich versichere, daß ich die beili egende Diplomarbeit ohne Hil fe Dritter und ohne

Benutzung anderer als der angegebenen Quelle und Hil fsmittel angefertigt und die den

benutzten Quellen wörtli ch oder inhaltli ch entnommen Stellen als solche kenntlich

gemacht habe.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

Ich bin mir bewußt, daß eine falsche Erklärung rechtliche Folgen haben wird.

Mannheim, im Mai 2000

