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1 Introduction 

1.1 Motivation 

Digital processing of audio on personal computers is becoming more and more 

common. Increasing hardware performance and decreasing price broadens possibiliti es 

and quality. Even today’s standard PC’s are capable of processing CD-quality audio 

data in real time, making it affordable even for amateurs and small studios to work in 

the digital domain. 

 

Real time audio processing allows modified audio to be heard while it is processed. 

Although needing much CPU power, it significantly improves professional digital 

audio: only when the effect of a changed parameter or setting (e.g. volume of an audio 

track) can be heard instantly, the desired parameter combination can be found in an 

acceptable time scale. Real time filters also improve non-destructive audio editing 

possibiliti es and can reduce the needed disk space for filtered sections. 

 

This thesis will evaluate the wavelet theory for the use in real time digital audio 

processing. Wavelets provide a new way of gathering frequency information from 

musical signals. Contrary to the traditionally employed technique for doing that based 

on Fourier transforms - the STFT - time information is not lost in a portion of analyzed 

audio data. This property (along with others, which are discussed later in this thesis) 

promises that wavelets provide eff icient and suitable algorithms for real-time digital 

audio processing. 

 

For real-world examples, the applications demonstrate usage of the wavelet transform 

for modification and enhancement of music. Several processing algorithms are 

evaluated in respect to their suitabilit y. 

1.2 Limits of this thesis 

This is a thesis in the field of computer science – it is focused on the computer-specific 

aspects of the wavelet theory. Consequently, the mathematical parts are not emphasized. 
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Most theoretic information is formulated in the text. For further reading on 

mathematical background of wavelets and filter bank, the reader is referred to [STN96], 

[MAL98] and [VEK95]. 

 

The objective of this thesis is to analyze the wavelet transform for processing digital 

audio in real time. The early idea of calculating a new wavelet has been dropped due to 

its immense mathematical complexity. It could fill an entire master’s thesis. Instead, 

focus is put on the implementation of the wavelet transform and on the real-time aspect 

of audio processing. 

1.3 Structure of the Thesis 

The thesis is divided into 3 parts. The first part in chapters 2 till 4 presents background 

concepts of the thesis’ subject. These cover digital audio, Fourier transform and wavelet 

transform. The first 2 are written non-technically, as only the understanding of the 

concepts is the essential aim. More detail would exceed purpose and the page limit . 

Chapter 4, however, provides more mathematical details, also as some formulas are 

needed and used in the next chapters. 

 

The second part studies how, and in which form, wavelets can be used for real time 

digital audio signals. Chapter 5 presents different wavelets and their suitabilit y, while in 

chapter 6 the computer implementation of the wavelet transform is discussed. 

 

The last part in chapter 7 documents the programs written for the thesis. An overview of 

the audio framework is outlined, followed by descriptions of the different example 

applications of the wavelet transform. For each application, the theory is provided, as 

well . 

 

The thesis ends with a conclusion of the achieved results. Indexes for figures, equations 

and tables are given at the beginning, the biobliography is at the end. In the appendixes, 

the classes of the audio framework are described. Furthermore, the contents of the 

accompanying CD are described. All referenced documents available in electronic 

format are included on it, along with the example applications. 
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2 Basic Concepts 

This chapter provides a general, non-technical overview of digital audio. The presented 

concepts mainly outline the difference of hearable sounds and how they are represented 

in a computer. Understanding is required for further reading. 

2.1 Fundamentals of Digital Audio 

2.1.1 Analog Domain 

Sounds, as the ear can hear them, are small changes in air pressure, which stimulate the 

eardrum. Any sound, even very complex ones, is an ongoing change of air pressure – 

lower and higher with different strengths. In analog audio systems, these changes are 

captured by a microphone and transformed to levels of electrical voltage [ROA96, 20]. 

Voltage is induced by the changes of air pressure, no change results in no voltage. Air 

pressure higher or lower than “normal” creates positive or negative voltage, 

respectively. The more the relative pressure changes, the more electrical current is 

created. This is a continuous process: the voltage changes continuously its level 

according to the continuous change of air pressure. At any given instant, a 

distinguishable voltage level is defined. Therefore, analog signals are called continuous-

time signals. The level at a given instant is referred to as amplitude.  

 

Air pressure has infinite precision as to how much it moves. Voltage is able to map the 

pressure accordingly (quality depends on the microphone), with infinite precision: it has 

a continuous range of amplitude levels. When the flow of voltage is fed into a 

loudspeaker, its membrane moves very similar to the original change of air pressure. 

This analogy gives the analog domain its name [ROA96, 20]. 

2.1.2 Converting to Digital 

A computer cannot handle continuous signals - only sequences of values are possible. 

The process of converting a continuous signal to a discrete sequences of values is done 

by sampling: in short intervals (e.g. every 1/44100 second), the level of the current is 

measured. As continuous time is split up into short intervals at which is sampled, 

sampling does a discretization of time. The number of intervals per time is called 
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sample rate and usually specified in Hz. One sampled value is called a sample. 

Generally, the sampling process of an audio signal with a suff icient sample rate does not 

introduce errors. More details on the sampling process will be presented in chapter 2.2. 

 

As a computer can only handle finite numbers, the value of a sample needs to be 

represented by numbers: each measured value is assigned a number; high voltage a high 

number, low voltage a low number. Common range of numbers is e.g. –32768 to 

+32767 that can be represented by 2 bytes on a computer1. As the analog signal is 

continuous, there exist many levels in between the numbers, so the level is rounded in 

order to correspond to a number. This assignment level-to-number is called 

quantization2. Quantization introduces loss of information: analog audio has a specific 

amplitude at a given time, whereas the sampled values only occur in steps of discrete 

numbers. Otherwise said, one sampled amplitude level corresponds to infinite analog 

levels. 

 

To summarize: transferring audio data from the analog to the digital domain requires 

discretization of time and of amplitude – sampling and quantization. 

2.1.3 Digital Domain 

Once the sound has been sampled, its representation is a sequence of discrete amplitude 

values, which can be stored and processed by the computer. The resulting flow of 

digital samples is a discrete signal.  

 

The first consumer product which used digital audio data was the CD. It uses a 

sampling frequency of 44100 samples per second, 16bit PCM coded samples in stereo.  

 

Digital signals can be stored and copied without loss of quality. While this is important 

for producers and convenient for consumers, it presents a problem for other parts of the 

music industry – performers, music distributors, and vendors assume large loss of turn 

over because of unlicensed copying of CDs and digitally compressed music files 

[THO99]. 

                                                 
1 corresponding to 16bit PCM data as used by the audio CD 
2 Quantization also requires division or multiplication of the level values to normalize them. 
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2.1.4 Decibels 

Decibel3 (dB) is a unit to measure the power (level) of a signal relative to a reference 

power. Usually, the reference power is the threshold of human hearing. Decibel values 

are logarithmic (as opposed to linear levels), approximating the relative human 

perception of loudness [KIE97, 21]4. Decibel values are also used as measurement for a 

range of levels of power, which is called the dynamic range. Humans have a dynamic 

range of approximately 125dB: 0dB are hardly heard, 125dB is the limit to pain 

[ROA96, 40]. 

2.1.5 Filters 

In general, the term filter means any operation on a signal [ROA96, 185]. In signal 

processing, however, filters usually denote an algorithm or device that alters frequencies 

of the signal. For example, an equalizer can be realized with a filter that attenuates and 

ampli fies the frequencies as desired. 

 

Two special filter types are low-pass and high-pass filters. Low-pass filters let all 

frequencies (in the pass band) pass that are below a cut-off frequency, whereas the 

remaining frequency components (in the stop band) are removed from the signal. High-

pass filters work the vice versa: their pass band is above the cut-off fr equency [ROA96, 

187]. Added to the cut-off fr equency, other parameters characterize a low-pass or high-

pass filter. An ideal filter exactly separates pass band and stop band. In practice, 

however, filters are far from ideal5: the transition band is where the frequency response 

changes from pass band to stop band (or vice versa for high-pass filters). The steepness 

is usually indicated in dB/octave. Generally, more steepness requires more effort i.e. 

computation time for digital filters. The gain of a filter is the relative attenuation (or 

boost) it provides between stop band and pass band.  

 

Filters are visualized as a plot of their frequency response, in the dimensions frequency 

versus amplitude as can be seen in Fig. 1. It shows a low pass filter. Usually, as it is 

done in the figure, the sample rate is normalized to 1. The frequency response extends 

                                                 
3 1/10 of one bel 
4  This is not very precise, but demonstrates the point. The subjective “ felt” loudness depends on many 

other aspects, e.g. the frequency. 
5 Ideal filters have an infinite impulse response (IIR), and cannot be implemented therefore. 
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to 0.5 as this is the Nyquist Limit (see below). This filter’s cut off fr equency is at about 

0.2. At a sampling rate of 44100Hz, this corresponds to 44100Hz*0.2=8820Hz. 

 

 

Fig. 1: A low pass filter frequency response 

Other special filter types include band-pass (letting through a coherent range of 

frequencies) and band-reject filters (or notch filter – the inverse of band-pass filter). 

2.2 AD-DA Conversion 

2.2.1 The Sampling Theorem 

The Sampling Theorem (Shannon and Rabe, 1939) is central for digital audio: having a 

band-limited signal with bandwidth B, it can fully be reconstructed by the sequence of 

its samples, if and only if the samples are taken with sampling frequency at least 2B. In 

other words, if a signal is sampled at sample rate f, a signal can be reconstructed 

perfectly when the signal’s bandwidth is at most f/2. This highest frequency for a given 

sample rate is called the Nyquist6 limit.  

 

Frequencies higher than the Nyquist limit cause aliasing (foldover) effects: these 

frequencies “ fold” into the frequency range below the Nyquist limit . This results in 

frequency content in the sampled signal, which is not part of the original signal [KIE97, 

29].  

                                                 
6 after the physicist Harry Nyquist (1889-1976) [KIE97, 26] 
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Aliasing is a serious problem for digital signal processing: in contrast to noise, which 

covers many frequencies at once, aliasing occurs at certain, folded, frequencies. The ear 

is more sensible to single frequency components than to a noise floor; aliasing is 

perceived more than quantization noise.  

 

Considering the Sampling Theorem is not only important for the sampling process: any 

processing on sampled data must not exceed the Nyquist limit. E.g. when creating 

sounds in the digital domain, their inherent harmonics can exceed the Nyquist Limit and 

cause aliasing. 

 

2.2.2 AD Conversion 

The conversion from analog to digital domain is done by Analog-to-Digital Converters 

(ADC, spoken “A-D-C”). Input is an analog signal, and the ADC transforms it into an 

equivalent digital, sampled, discrete representation. Most commonly found are ADC’s 

which output a sequence of digital encoded samples: voltages are quantized to a linear 

range of digital values. Other types, li ke logarithmic scale converters, exist, but are not 

very common anymore. 

 

The main requirement of the ADC is, that the digital representation reflects the original 

signal as closely as possible.  

 

To reduce aliasing, a low pass filter needs to be applied to the analog signal before the 

sampling process: it reduces the signal’s bandwidth so that it contains only frequencies 

below the Nyquist limit. Although this anti-aliasing filter effectively removes aliasing 

effects, it introduces new problems: analog filters do not have linear phase – the signal 

is non-linearly delayed. I.e. the delay is dependent on the frequency of the signal. 

Especially high frequencies near the cut-off fr equency are delayed.  

 

A solution is to move the filter in the digital domain. Good digital filters provide a much 

more linear phase response than analog ones [ROA96, 42]. Besides that, digital filters 

are cheaper to manufacture [KIE97, 31]. In order to use a digital anti-aliasing filter, the 

analog signal is sampled at a higher sample rate than the target sample rate (typically a 

factor of 4 or 8). The resulting signal is digitally filtered and downsampled. This 
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technique is called oversampling. It has been developed by Motorola. It will be seen 

that oversampling has another nice property. 

 

As noted in chapter 2.1.2on page 3, quantization introduces errors. These errors are 

signal dependent. This dependency becomes obvious by looking at sampled silence: as 

there is no signal, there is no quantization error [ROA96, 34]. Quantization errors create 

quantization noise. Its level and type depends on the signal, the sample rate, the quality 

of the ADC and of course, how many bits are used for one sample [ROA96, 36].  

2.2.3 DA Conversion 

The reverse process of sampling is done by the Digital-to-Analog Converter (DAC, 

spoken “dack”). There are similar problems like for the ADC. To recreate a smooth, 

continuous signal from the discrete samples, the values between samples are 

interpolated by a low pass filter following the digital-to-analog conversion [ROA96, 

32].  

 

Again, this filter may be moved to the digital domain by oversampling. This has the 

additional advantage, that the quantization noise is effectively reduced – yielding an 

improved signal-to-noise ratio. A four-times oversampled signal has 6dB less 

quantization noise [ROA96, 42]. The resulting immense improvement of quality 

suggests that it is the more important reason for oversampling. 

2.2.4 Parameters for optimal Sampling 

In order to most accurately capture sounds, the dynamic range and the frequency 

bandwidth are significant parameters. The number of bits per sample is closely related 

to the dynamic range of the digital signal. 1bit adds about 6dB dynamic range [OPS85, 

447]. The frequency bandwidth is determined by the sample rate. 

 

Audible frequency range is from about 20Hz to 20KHz7. Taking this into account, a 

sampling frequency of 40KHz is the minimum to sample the entire audible frequency 

                                                 
7  Some people are able to hear higher frequencies, and scientific experiments confirm the physiological 

and subjective effects of frequencies above 22KHz [ROA96, 31]. 
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spectrum. In order to provide the human’s dynamic range of 125dB, about 21 bits per 

sample are required.  

 

This does not mean that higher values are useless: More bits decrease quantization 

noise. Digital signals with frequencies near the Nyquist Limit are diff icult to handle for 

ADC’s and DAC’s, so a higher sample rate gives better quality. And especially for 

digital processing or synthesis, a “head room” is useful [ROA96, 31]. Therefore it can 

be said that the more bits are used per sample and the higher the sample rate, the closer 

the digital signal can represent real sounds. 

 

However, sample rate and number of bits per sample influence directly the amount of 

digital data produced. This is an important factor for the costs of storage. When audio 

data is to be sent over a network, the bandwidth of the network connection has to taken 

into account. Audio processing needs more computational power for higher-quality 

audio data. Therefore, a “perfect” sample rate and bit resolution does not exist: 

requirements and possibiliti es have to be considered. 

 

The audio CD uses 16 bit sample resolution at 44.1KHz. This corresponds to a theoretic 

dynamic range of 96dB (without oversampling), while having a frequency bandwidth of 

22050Hz. When the CD has been developed in the early 1980’s, this met the 

requirements for high-quality audio playback. The possibilit y of storing 74 minutes of 

audio (approximately 172KB/s) on one disc was a satisfying limit . Today, 24bit/96KHz 

systems are becoming popular and available. Their dynamic range (max. 144dB) 

exceeds human perception, and they provide a good representation of high frequencies 

(up to 48KHz). There is considerably more “headroom” for digital signal processing or 

synthesis. Although this format needs 562.5KB/s, today’s costs for storage and 

computational power are lower, and the demand for high-quality digital audio 

processing is higher than ever. 

 

On the other hand, not in all cases the entire audible range of human hearing needs to be 

captured. Human speech, for example, only contains frequencies up to 3000Hz and 

dynamic range is not crucial for the words to remain understandable. For digital 

telephony (ISDN), a sampling rate of 8000Hz is used by default, with non-linear 
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quantization providing about 72dB8. This dramatically reduces the amount of audio data 

that is transferred in time: ISDN uses only 62.5KB/s. 

2.3 Analysis-Resynthesis 

In the field of digital signal processing, the terms analysis and resynthesis stand for 

conversion from the time domain into another domain and vice versa. Chapter 3 

provides an introduction to the Fourier transform (FT) performs analysis to the 

frequency domain and the corresponding resynthesis. The term resynthesis is used, as it 

transfers back to the original domain. This is distinguished of synthesis, where data, 

which do not originate in the time domain, are transformed to the time domain9. 

 

Usually, the analysis algorithm is based on a mathematical transform; it consists of a 

forward transform and its counterpart the inverse transform for analysis and 

resynthesis, respectively. An important aspect of a pair of forward transform/inverse 

transform is its ability to accurately restore the original signal when applied 

successively. This is called the perfect reconstruction property. 

 

For digital signal processing, transforms are powerful tools: modifications in another 

domain provide new possibilities of altering the signal. A demonstrative example is a 

way to implement an equalizer (as found on stereo systems) using the FT: after the 

signal is transformed to the frequency domain, the levels of the frequencies can be 

accessed directly and thus can be increased or decreased in order to amplify or attenuate 

certain frequencies. The inverse transform recreates the original signal but with changed 

frequency components. 

 

Furthermore, analysis transforms provide indispensable possibilities for exploration of 

and research on signals. There, resynthesis is not needed and the perfect reconstruction 

property is not important. 

                                                 
8  ISDN samples are uLaw or aLaw encoded with 8 bits per sample. This logarithmic encoding has a 

subjective dynamic range corresponding to 12bit samples linearly quantized. 
9  This separation of the terms synthesis and resynthesis is not always done in literature. Sometimes, 

synthesis stands for both. 
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3 The Short Time Fourier Transform 

This chapter provides an introduction to the short time Fourier transform. This subject is 

too large to be covered completely. Only aspects relevant to audio processing are 

presented, further limited in respect to the following comparison with wavelets. 

3.1 Overview 

In the process of sampling, coded audio data are a sequence of samples, yielding a time-

amplitude function. This representation is called the time domain [KIE97, 367].  

 

However, music is more than amplitude: one fundamental criterion is pitch. In this 

context, pitch means the height of a played note, or more general, the frequency of a 

sound. Every sound, also the most complex one, consists of frequencies. Sounds with 

extreme frequency content are sine waves on one hand, consisting of exactly one 

frequency, and white noise on the other hand, containing all frequencies “at once”.  

 

The Fourier transform allows transforming from time domain to frequency domain and 

vice versa (analysis/resynthesis). The frequency domain is in dimensions frequency 

versus amplitude. After Fourier analysis, the amplitude (or power) of each frequency 

band can be retrieved10. The inverse Fourier transform performs resynthesis from the 

output of the forward transform. The transform is lossless, i.e. the frequency domain 

contains the same information as the time domain, only in another representation. 

Additionally, perfect reconstruction is possible: applying the forward and the inverse 

transform successively results in exactly the original signal. 

                                                 
10 The forward FT also produces phase values, which are not regarded here. 
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Fig. 2: The Fourier transform 

Fig. 2 demonstrates the Fourier transform:  

a) a sine wave with low frequency (large period)  

b) a second sine wave with higher frequency and less amplitude than a) 

c) sum of a) and b). 

d) spectrum plot of the output of the Fourier transform of c) 

The latter shows the 2 frequency components of c) as well as their magnitude11 in the 

frequency domain.  

 

The mathematical foundation of this transform is a theory developed by Jean Baptiste 

Fourier12. He proved that any stationary signal can be represented as an infinite sum of 

sine waves, each having a specific amplitude and phase [ROA96, 545]. Each sine wave 

represents one frequency, which can be derived from the period. The amplitude of a 

specific sine wave represents the amount of that frequency in the signal. For spectral 

analysis of audio data, the phase of the sine wave is not very important: the ear cannot 

                                                 
11 “magnitude” is a term for the amplitude of frequency 
12 French mathematician (1768-1830) 
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hear phase13 [ROA96, 19]. For resynthesis, all the sine waves, each at their specific 

amplitude and phase, are added. This results in the original signal. 

 

The original Fourier transform by Jean Baptiste Fourier cannot be applied directly to 

digital audio data. There are some inherent problems, which will be discussed in the 

following. 

3.2 Discrete Analysis and Resynthesis 

As digital audio data is discrete, a discrete version of the FT, the discrete FT (DFT) is 

used, which transforms a discrete signal to a discrete frequency spectrum and vice 

versa. It maintains the property of exact reconstruction. As opposed to the continuous 

FT, it may be applied to a limited number of input samples, with the restriction that the 

analyzed sequence is assumed to be a single period of a periodically repeating 

waveform [EMB95, 27]. This is due to the periodic nature of the sine waves, 

fundamental element of Fourier analysis. 

 

For calculating the DFT on computers, various fast algorithms have been developed, 

which are called fast Fourier transforms (FFT). The initial FFT has been discovered by 

Cooley and Tukey in the 1960s [KIE97, 376]. Modern FFT computation algorithms 

have a complexity of O(n log(n)) [FRJ00]. 

3.3 Frequency Bands 

The output of the DFT can be interpreted as amplitudes of frequency bands14. Each 

band has a fixed bandwidth and a center frequency – the main frequency it analyses. For 

example, an analysis with 512 frequency bands at a sampling rate of 44100Hz means 

that the bands are spaced in intervals of approximately 43Hz15. The first frequency 

                                                 
13 Under laboratory conditions, a 180 degree phase shift (polarity inversion) can be heard by some people 

[ROA96, 19] 
14 Frequency bands are also called bins [ROA96, 557]. 
15 (22050Hz) / (512 bands). 22050 is the bandwidth of the analyzed signal, it equals the Nyquist 

frequency 
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band’s center frequency is at 0Hz16, the second at 43Hz, and so on. 43Hz is the 

fundamental frequency – all other analyzed center frequencies are multiples of it. 

 

While this property of equal-spaced bands may be useful for other applications of the 

DFT like in physical analysis, it poses a problem for audio analysis: audio frequencies 

are heard logarithmically. An interval of one octave always sounds like the same 

interval, be it 2 low notes or 2 high notes spaced at one octave. Otherwise said, the 

interval 100Hz to 200Hz sounds like the interval from 5000Hz to 10KHz. As an 

example, when the DFT is used to extract the note (pitch) of a sound, there is the 

problem that low frequencies have a low logarithmic resolution compared to the high 

frequencies. With the 512-band analysis above, there is about one band corresponding 

for the octave 30Hz to 60Hz, whereas the octave from 3000Hz to 6000Hz is represented 

by 100 bands. So the pitch of a note at 50Hz cannot be detected, the only information 

known from the analysis is that it lies in the second band and thus somewhere around 

43Hz. For a high note, the pitch can be detected very well – there are 12 (half-) notes 

per octave, so 100 bands are far more than needed to determine its exact pitch. One can 

say, the DFT generates too littl e detail for low frequencies, while generating too much 

detail for high frequencies in audio analysis. 

3.4 Windowing 

The DFT does not measure exactly the amplitude of the frequencies of one band. 

Frequencies, which are not multiples of the fundamental frequency, cause frequency 

leakage: in the example above of a 50Hz note, not only the 43Hz-band is affected, but 

also neighbored bands have littl e frequency amplitude. Frequency leakage can be so 

strong, that existing, low amplitude frequencies in a neighbored band are completely 

hidden by the leakage amplitudes [ROA96, 1102]. 

 

Fig. 3 shows such a problem: the 2 mixed sine signals have both a littl e higher 

frequency than in Fig. 2. In a) it is visible that the signal’s period does not match exactly 

the length of the analyzed chunk – and thus the frequency components are not multiples 

                                                 
16 0Hz actually does not exist. The 0Hz band is called the DC offset [ROA96, 556] and determines an 

offset to all amplitude values in the time domain [ROA96, 557]. 



3 The Short Time Fourier Transform  

 - 15 - 

of the fundamental frequency. The frequency domain plot b) shows that the 2 

frequencies are not extracted exactly by Fourier analysis: frequency leakage occurs.  

 

Fig. 3: Frequency leakage 

The technique for dealing with the problem of frequency leakage is windowing. In the 

time domain, the signal is enveloped in a window, which reduces the amplitude at the 

edges [EMB95, 27]. Like this, there is no or littl e signal at the boundaries, providing a 

smooth sequence, as you can see in Fig. 4: a) shows a typical window function, the 

Hanning window [PTV94, 554]. In b), the signal from Fig. 4 is enveloped, “windowed” 

by it. The Fourier analysis c) is not as clean as in Fig. 2, but substantially better than in 

Fig. 3. For further details on the underlying theory of windowing, the reader is referred 

to [OPS85, 272f.] 
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Fig. 4: The window, windowed signal and its frequency plot 

A side effect of windowing is that the frequency spectrum is changed slightly. The 

amplitude of frequencies is lowered: it can be seen that the windowed spectrum has 

lower amplitudes than the original spectrum [ROA96, 1100]. The side effects depend on 

the choice of the window function. 

 

There are many different windows with different properties. Other windows like 

Blackman and Hamming are commonly used, too. For more information on windows 

and on their choice, see [PTV94, 554]. 

Applying the DFT to small windows is called the short time Fourier transform (STFT). 

It was first introduced by D. Gabor in 1946, who established the name time-frequency 

domain, as successive application of the STFT creates a time-varying frequency 

spectrum [PPR91, 119]. 

 

In fact, by limiting the number of analyzed samples when applying the DFT, the data 

are already windowed by an implicit square window [PTV94, 553]. In this thesis, the 

term windowing is used for applying a non-square window to the signal. 
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When resynthesis is needed, it is impossible to exactly reproduce the original signal, as 

it is affected by the window: the windowed signal will be generated. A common 

technique to overcome this is to use overlapping chunks of data and mix the overlapped 

resynthesized parts (overlap-and-add). With proper windows, this gives good results, 

but increases processing demands (computation time): the more data is overlapped, the 

more samples of the signal are analyzed twice [EMB95, 187]. In real time digital audio, 

overlapping creates extra latency of the overlapped part. 

3.5 Time/Frequency Uncertainty 

In the frequency domain, time information is lost17: the frequency bands (as output by 

the forward DFT) represent the frequency contents over the entire temporal interval, 

which has been analyzed. In order to obtain frequency information for sampled, finite-

duration, time-varying signals, subsequent chunks of data are analyzed [ROA96, 550]. 

These chunks are small i n size, (typically 32-1024 samples [KIE97, 368]) and thus 

represent a short time interval, which must be windowed to reduce the limitations of the 

DFT. The resulting sequence of analyzed chunks is a time-varying spectrum [ROA96, 

551]. 

 

By using the STFT, a time-frequency domain is obtained, though the time axis has 

much lower resolution than the time domain. When high time resolution is necessary 

(i.e. the exact time of an event needs to be known), the analyzed chunks must be very 

short. However, this results in a coarse frequency spectrum, as with the STFT, the 

number of frequency bands is proportional to the number of input samples18. To keep 

the example, the event’s time will be known precisely, but its frequency content cannot 

be determined accurately. 

 

Conversely, if high frequency resolution is wished, time resolution is sacrificed, i.e. the 

exact time of the event cannot be derived [ROA97, 557]. Analyzing time-varying 

signals using the STFT is thus always a tradeoff of time resolution and frequency 

resolution. As another example, let a 1 second audio signal with sampling rate 44100Hz 

                                                 
17 Actually, it is not lost, as it may be recreated by the corresponding resynthesis. More correct is to say, 

time information is not directly accessible in the frequency domain. 
18 the number of resulting frequency bands equals half the number of analyzed samples [ROA97, 559] 
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be analyzed using the STFT: for example, when a chunk size of 1024 samples (23ms19) 

is used, the analyzed frequency spectrum has a resolution of 512 frequency bands. So, 

the bands are spaced in intervals of 43Hz20. Thus, an event’s time can be determined 

with accuracy of 23ms, whereas its frequency is known in steps of 43Hz. However, a 

chunk size of 32 samples results in 0.7ms accuracy in time, but only 1378Hz in 

frequency. 

 

This coherency of time and frequency is called the uncertainty principle due to the 

similarity to the research results of quantum physicists such as Werner Heisenberg in 

early 20th century [ROA97, 557]. It is therefore sometimes referred to as Heisenberg’s 

uncertainty principle. An exact mathematical derivation can be found in [VEK95, 76]. 

3.6 Spectral Representation 

The output of the forward FT, the frequency spectrum, may be visualized in different 

ways. For the STFT, time information has to be presented, too.  

 

Fig. 5: Original signal in the time domain 

 

 

 

                                                 
19 (1024samples/s) / (44100Hz) * (1000ms / 1s)  
20 see footnote 15 on page 13 
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Fig. 5 and Fig. 6 show 2 times the same signal: first as a plot of the time domain and 

secondly the frequency domain. The time domain plots time vs. amplitude (volume), 

whereas the frequency domain displays the frequency contents of the same signal: 

frequency vs. amplitude of the frequency bands. The signal has been analyzed by a 1024 

point DFT using a Hanning window. This type of representation is called discrete or 

line spectrum. It is in the category of static plots – it displays a “sonic snapshot” or “still 

image” of a sound [ROA96, 537]. A variation of this uses the power spectrum rather 

than the amplitude spectrum: as defined in physics, the power spectrum is the square of 

the amplitude spectrum. Basically, both look similar, but power plots better correspond 

to human perception [ROA96, 539]. 

 

Fig. 6: Line spectrum in the frequency domain 

Fig. 7 displays 2 variations of 3-dimensional plots of spectrum versus time, analyzed 

using the STFT. Essentially, they display a sequence of frequency-amplitude plots. In 

figure a), the time moves from left to right as it does in time domain representations. 

Figure b) shows another view, time moving from back to front. A continuous 3d-display 

of real time data is also referred to as waterfall display, since it shows the rising and 

falli ng frequency energy in a fluid li ke depiction [ROA96, 541].  

This representation is in the category of time-varying spectrum plots [ROA96, 537]. 

They allow following the evolution of the sound in time. 
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Fig. 7: 3d frequency plots 

Fig. 8 shows the so-called spectrogram21 of the same signal as in Fig. 5. Like the 3 

dimensional plot, it is in the category of time-varying plots: primarily, it displays time 

vs. frequency. Additionally, the energy (or amplitude) of each band is represented as the 

color. In this print, low energy is bright, high energy is dark. Thus, non-existing 

frequency contents are white. Spectrograms are also called sonograms, and as they 

where first used in speech analysis, they were first referred to as visible speech [ROA96, 

541]. 

                                                 
21 Created with a Blackman window, 64 frequency bands, on a logarithmic energy scale 
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Fig. 8: Spectrogram 

The analyzed sound is the author saying the German words “nichts jedoch” . Every letter 

can be “seen” very well , vocals and consonants are easy to distinguish. Also interesting 

to note, the last “ch” obviously sounds different than the first “ch”22. In the sonogram, 

many aspects of a sound can be seen, which cannot be seen in the time domain plot. 

3.7 STFT for processing Musical Signals 

The previous discussion showed the main aspects of Fourier analysis of audio data. 

Here it will be evaluated how suited it is and its drawbacks for real time audio data. 

3.7.1 Points of Strength 

The STFT is a powerful tool to analyze the frequency spectrum of sound. It is possible 

to obtain very detailed information of the frequency content of a signal. 

 

It is a standard tool for signal processing: much research has been done, and many 

enhancements have been developed. Fast computation algorithms are available which 

use low computation time and can be applied in real time applications. Many musical 

applications today use the Fourier transform for processing, also in professional 

                                                 
22 The first “ch” is a “shh”-sound produced in front of the mouth, the second one is a gargled noise 

produced in the throat. It is visible that the first one is composed of a broad coherent range of 
frequencies, thus resembling white noise, whereas the second one contains distinguishable frequency 
components. 
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programs and hardware for high-quality processing. For example, the popular mp3 file 

format23 uses a derivation24 of the DFT for high quality compression of digital audio 

data [ISO93, 33]. 

 

3.7.2 Disadvantages 

Despite the general suitabilit y for calculating the frequency spectrum, several 

drawbacks for audio data, especially in real time, have been identified in the previous 

chapters: 

 

1. The analysis produces equal-spaced frequency bands. This does not correspond to 

human perception of frequencies. To get acceptable frequency resolution in low 

frequencies, high frequency resolution is “over-detailed” . Therefore, the FT is quite 

ineff icient for this purpose [ROA96, 592]. 

2. Digital audio data are not periodic or stationary – in contrary, music, for example, 

changes continuously. Then, application of the FT produces errors. The more 

complicated transient phenomena occur in the analyzed signal, the greater the error 

[ROA96, 593].  

3. When the data are windowed to reduce errors, it is even more ineff icient, as 

techniques as overlap-and-add need to be used. 

4. For real time application of the STFT, a compromise of time and frequency 

resolution must be accepted due to the uncertainty principle. 

 

Many alternative spectrum analysis methods have been developed in order to overcome 

the limitations of the FT approach. However, they all have their respective limitations, 

and no general method overcomes all limit ations without introducing new ones. Rather, 

they provide better solutions only in specific fields [ROA96, 594]. Especially, most of 

them do not provide resynthesis, so they are not suitable for processing audio data. 

Some of these alternative approaches are autoregression spectrum analysis, linear 

predictive coding, Walsh functions, cochlegrams. For further reading, refer to [ROA96, 

594f.]. 

                                                 
23 MPEG 1 layer 3 
24 Modified Discrete Cosine Transform 
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3.7.3 Conclusion 

The STFT has been employed successfully in real time musical processing systems. Its 

deep research provides good working solutions for the discussed problems. On the other 

hand, its inherent problems make it seem more like a compromise than a suitable 

solution in this field. Much research has been done aiming at new time frequency 

representations, which overcome the time-frequency uncertainty. The following chapter 

introduces the wavelet transform that is the outcome of relatively recent research in this 

field. 
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4 The Wavelet Transform 

4.1 Introduction 

The pre-requisites of the wavelet’s history begin in 1910, when Alfred Haar, a German 

mathematician, developed the now called Haar function and associated Haar matrix. It 

is a special kind of matrix: by 2 operations (translation – compressing - and dilation - 

shifting) on a “mother vector” , the matrix is constructed, all vectors being automatically 

perpendicular to each other, due to the special “mother” vector. With this scheme it was 

possible to create orthogonal matrices of any size, all vectors being based on one first 

vector [STN96, 436]. This is the first known construction of a wavelet, while the term 

wavelet has not been established at that time. 

 

In the following, much research has been done to overcome and understand the 

limitations of the FT. One main field of interest was to break up a complicated 

phenomenon into many simple pieces [JAS94, 4]. In the 30’s, these were Littlewood-

Paley techniques, further developed in the 50’s and 60’s and leading to applications of 

the Calderon-Zygmund theory. In the 70’s, atomic decompositions like in Hardy space 

theory were widely used. G. Weiss and R. Coifman provided much research on these 

atomic decompositions [GRA95, 4].  

 

In 1980, A. Grossmann and J. Morlet broadly defined wavelets in the context of 

quantum physics. Little later, J. Strömberg discovered the first orthogonal wavelets. 

Later in the 80’s, Y. Meyer and other independent groups realized discrete calculations 

of the Littlewood-Paley techniques, followed by the understanding, that this could be 

effectively a substitute for Fourier techniques. It were Grossmann and Morlet who first 

suggested the name “wavelets” instead of “ Littlewood-Paley theory”  [JAS94, 4]. 

 

Later development in the 80’s and 90’s is marked by research of S. Mallat (introducing 

multi resolution analysis), Y. Meyer (constructing the first non-trivial wavelets) and I. 

Daubechies (creating compactly supported wavelets of f ixed regularity). 
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4.2 Constant Q Filter Bank Analysis 

The problem of equal spaced frequency bands with the FT has led to a variety of 

constant Q filter bank analysis transforms. They have been used in audio research since 

the late 1970s [ROA96, 578]. Examples are the auditory transform and the bounded-Q 

frequency transform. Also the wavelet transform can be classified as a constant Q 

technique. 

 

Q can be seen as the quotient of width of a band to its center frequency (also referred to 

as Äf / f with f=frequency). So with increasing frequency, the bandwidth becomes 

greater in constant Q analysis. The analysis bands are thin for low frequencies and wide 

for high frequencies. The FT transform, though, could be classified as a constant 

bandwidth transform.  

 

The length of the analysis window is also proportional to the frequency being analyzed: 

long windows are used to analyze low frequencies, short windows for high frequencies 

[ROA96, 579]. Like this, the uncertainty principle is not avoided, but it is used 

effectively. Constant Q analysis trades off time versus frequency resolution “ inside” the 

transform: temporal uncertainty but high frequency resolution in lower octaves (narrow 

analysis bands) and high temporal resolution with low frequency resolution in higher 

octaves. As short transients tend to contain high-frequency components, the constant Q 

scheme allows good time localization of events. 

 

The ear has a similar frequency response as a constant Q response, especially above 

500Hz: the human auditory system performs a kind of f ilter bank analysis with 

frequency-dependent width of bands. These bands are called critical bands [ROA96, 

579]. 

 

Constant Q analysis can be performed by applying several low pass (and optionally high 

pass) filters successively to a signal, or by applying several band pass filters to the same 

signal. Other approaches exist, e.g. based on FFT algorithms to exploit the high 

development status of FFT algorithms. While constant Q filter banks typically are less 

eff icient in calculation, they do not need to do as many calculations: e.g. in order to 

analyze 4 octaves with resolution of half notes (12 half notes per octave), a constant Q 
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analysis needs 48 bands (each one covering a half note frequency bandwidth), while 

Fourier analysis needs e.g. 200 bands25 [ROA96, 581]. 

4.3 Filter Bank Wavelet Transform 

In this chapter, the filter bank representation of the wavelet transform is explained. The 

next chapter will provide background about wavelet functions, followed by the 

connection back to filter banks. 

 

This approach may appear as starting at the end, since historically the filter bank 

representation came later than the continuous transform –the link has been made in the 

late eighties [MAA00, 25], especially by S. Mallat. However, the reader is already 

familiarized with filters and discrete signals, so this approach integrates better in the 

logic of the thesis. 

4.3.1 Digital Filters 

Digital filters in the time domain are implemented using a technique called convolution. 

A set of filter coefficients (or taps) is applied to the samples, by combining previous 

samples with the coeff icients. One output sample is the sum of previous samples 

multiplied with the filter coeff icients. The input sample is multiplied with the first filter 

coeff icient, the previous input sample with the second filter coeff icient, and so on. The 

sum of all products is the resulting, filtered, output sample. As a formula, convolution 

looks like this (after [VEK95, 49]): 

∑
−

=

=
1N

0i
ii-nn hxy  

x: input signal 
y: output signal (filtered) 
h: filter coeff icients 
N: number of f ilter coeff icients 
n: index of sample 

Equation 1: Convolution 

Convolution can be written using matrix notation, where signals are written as vectors. 

It can be written like this: 

                                                 
25 Approximate minimum amount needed to measure half-note pitches at around 20Hz to 320Hz.  
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Equation 2: Convolution in matrix representation 

Empty spaces in the matrix stand for zeros. Only a filter with length 2 is shown. The 

convolution matrix is a right circulant matrix, and, more specifically, a Toeplitz matrix 

[VEK95, 34][STN96, 36], where each row is a right-shift of the previous row. 

 

In order to retrieve the filter coeff icients, a wide variety of design methods exists, which 

result in filters with different properties. For lowpass and highpass filters, steepness of 

the transition band and flatness of passband and stopband are important design 

restrictions and requirements. The reader is referred to [EMB95, 136f.], [STN96, 53f.], 

[CRO98], [FIS99], and [OPS85] for further details on filter design. 

4.3.2 Filter Banks 

A filter bank is a set of f ilters, which split up the signal’s frequency components in 

different signals, each with a subset of frequencies. The combined pass bands of the 

filters cover the entire frequency range, so the filters are complementary. A simple filter 

bank consists of one low pass filter and one high pass filter, both having a cut off 

frequency at half the frequency bandwidth. Applying this filter bank to a signal results 

in 2 new signals, one with the lower half frequencies and one with the upper half 

frequencies. The FT can be considered as a special filter bank: it splits the signal into 

many sine waves. 

 

Often, and in the scope of this thesis, only filter banks with the described low pass and 

high pass filters are used. A block diagram of this filter bank looks like this: 

H0x

H1

y0

y1

X: input signal
H0, H1: low pass, high pass filters
y0, y1: output signals

 

Fig. 9: Simple filter bank 
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To construct a filter bank with more than 2 frequency bands, y0 could be filtered again 

by 2 filters, one band pass filter and again one high pass filter which divide the bands up 

again into 2 bands.  

 

However, it is possible to further separate the frequency bands by only using the same 

high pass and low pass filters. The bandwidth of y0 and y1 is both half the bandwidth of 

the original signal – the other half has been removed by the filter. Following the 

Sampling Theorem, they can be exactly represented by half the number of samples. And 

exactly this is done with decimators26. They reduce a signal to have only half the 

samples, by taking every 2nd sample. This is called downsampling, its operator is 

usually indicated by ↓2. Decimating results in a signal with half the number of samples, 

but they represent the same time interval as the original signal. Thus, the sample rate is 

halved, too. The decimated output can then be filtered again with the same filters to 

again split it up into lower and higher frequency contents.  

 

A filter bank with 4 output bands could then be constructed following this block 

diagram: 

H0x

H1

H0

H1

v0,0

v0,1

H0

H1

v1,0

v1,1

↓2

↓2

v0y0

y1 v1

↓2

↓2

↓2

↓2
 

Fig. 10: 2-channel filter bank with 4 output bands 

Thus, this type of f ilter bank works in successive stages. The number of f ilters per stage 

is called a channel. It is possible to create a 3-channel filter bank with low pass, high 

pass and band pass (for a range of frequencies between low pass and high pass filter). In 

general, it is referred to M-channel filter banks. When the frequency bands are of equal 

distribution, decimators can be used for downsampling, indicated by ↓M. An M-

decimator takes every M th sample and discards the rest. In the following, only 2-channel 

filter banks are discussed. 

                                                 
26 The term “decimator” is not historically correct, but widely used. It originates of the Roman practice of 

killi ng every 10th soldier of a defeated army, thus meaning “keep 9 out of 10” [VEK95, 66]. 
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4.3.3 Perfect Reconstruction 

Under certain conditions, a filter bank is reversible, so that the original input can be 

retrieved from the bands v. Reconstruction is very useful, the filter bank becomes a 

forward transform/inverse transform pair. 

 

Overall, it depends on the filters whether perfect reconstruction is possible. For 

reconstruction, upsampling (expanding) must be done in order to undo the decimation. 

This is done by inserting a zero after each sample. Additionally, 2 resynthesis filters F0 

and F1 are needed to smooth out the zeros, reversing the analysis low pass and high pass 

filters. The resulting samples are obtained by adding the outputs of the resynthesis 

filters. This diagram shows a 2-channel filter bank, analysis followed by resynthesis 

(after [STN96, 103]): 

H0x

H1

↓2

↓2

v0y0

y1 v1

↑2

↑2

F0

F1

u0

u1 x

input analysis decimators expandors resynthesis output
 

Fig. 11: Analysis/resynthesis filter bank 

There are many aspects in order to fulfill the perfect reconstruction property for a filter 

bank. A selection is presented in the following. 

H0

amplitude

frequency

H1

0 0.25 0.5
 

Fig. 12: overlapping lowpass and highpass filter responses (symbolized) 
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As discrete filters do not have an ideal cut off (i.e. they do have a transition band), the 

low pass and high pass filters’ fr equency responses overlap: the low pass lets through 

frequency components of the high pass band, conversely, the high pass filter lets 

through low frequencies (see Fig. 12). This aspect, causes aliasing when downsampled 

(as described in chapter 2.2.2 for ADC’s, which perform a special kind of 

downsampling) [STN96, 103]. The solution for perfect reconstruction is to design the 

reconstruction filters F0 and F1 in such a way that they cancel out the aliasing of the 

analysis filters [STN96, 104].  

 

As F0 and F1 therefore depend strongly on the analysis filters, it is convenient to 

calculate them directly from H0 and H1. And indeed there exists a simple formula for 

calculating them, the alternating signs pattern. F0 is derived from H1 by changing the 

sign of each second filter coeff icient starting with the second. F1 is constructed 

analogously, but sign changing starts with the first filter coeff icient.  

a, b, cH0

p, q, r, s, tH1 -a, b, -c F1

F0p, -q, r, -s, t

(after [STN96, 105])
 

Fig. 13: alternating signs pattern 

The diagram shows an example how to construct F0 and F1: a, b, c and p, q, r, s, t are the 

coeff icients of H0 and H1, respectively. Obviously, obtaining the analysis filters from 

given resynthesis filters works equally well . 

 

The analysis filters also depend on each other. As said before, the frequency responses 

must be complementary. And to fulfill perfect reconstruction in conjunction with the 

reconstruction filters, still more conditions have to be met. It would exceed the scope of 

this elaboration to cover the mathematics behind the perfect reconstruction condition. 

For more detail on this, see [STN96, 107f.].  

 

However, there is a method for deriving H1 from H0 when both filters are to have the 

same length. It is called the alternating flip: 
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a, b, c, dH0

d, -c, b, -aH1 -a, b, -c, d F1

F0d, c, b, a

(after [STN96, 110])

alternating
flip

order flip

 

Fig. 14: alternating flip pattern 

The coeff icients of H1 are the reversed, sign changed coeff icients of H0. Still , the perfect 

reconstruction condition and aliasing cancellation are imposed on the filters. Then, the 

filters lead to an orthogonal filter bank [STN96, 109]. It is called orthogonal, as the 

convolution matrix is orthogonal, i.e. the transpose is its inverse matrix [BRS89, 155]. 

There exists another easy way for obtaining H1: it is constructed from H0 using the 

alternating signs pattern. These filters are called quadrature mirror filter27 (QMF) banks 

[STN96, 109]. They lack some useful properties of orthogonal filter banks, so they are 

not discussed further. 

 

Orthogonality is not required for perfect reconstruction filter banks. The minimum 

requirement is biorthogonality of forward transform matrix to its inverse counterpart. 

Then, orthogonality is the special case where the filter bank is biorthogonal to itself. 

Biorthogonal filter banks do not necessarily have the same length for H0 and H1. In this 

thesis, the term “biorthogonal” is used for filter banks, which are not orthogonal. 

4.3.4 Wavelet Filter Bank 

Wavelet filter banks are perfect reconstruction filter banks. They appear in trees of 

filters: in the first level, the frequency spectrum is divided into lower and higher half. 

After downsampling, these can be split up again, up to a specified level. The wavelet 

packet tree follows the model in Fig. 10: each downsampled filter output is split again 

in 2 signals. Fig. 15 shows a 3-level decomposition [ALT96]. 

                                                 
27 Also called conjugate mirror filters [COH92, 6] 
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Fig. 15: Wavelet packet tree 

The second method is the wavelet tree. There, the high pass output is not separated 

further. It is called the pyramid algorithm or Mallat’s algorithm [STN96, 414]. 
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d0

Level 0
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Level 2

 

Fig. 16: Wavelet tree 

The wavelet tree has some important properties. The output signals that it produces are 

called details d and approximations a, they are referred to as the wavelet coefficients. 

The approximations are the decimated output of the low pass filter; conversely the 

details come from high pass filtering. In each level, the approximations are separated 

further, and only the approximations of the last level are kept. The numbers of levels 

determines the number of resulting sets of detail coefficients. d0, the details of level 0, 

have half the number of coefficients as the number of samples of the original signal, due 

to decimation. Consequently, d1 has one-fourth the number of coefficients, and so on28. 

 

When it is looked at the meaning of the coefficients, it will appear obvious that d0 

contains the higher half of frequencies of the original signal, d1 contains the range of 

                                                 
28 Level ordering is reversed for denoting the order of calculation. 
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frequencies from one fourth to half of the frequencies, etc. As these are octaves, the 

wavelet tree effectively splits up the signal in octaves. The approximations of the last 

level contain the remaining lower frequencies. As an example, at a sampling rate of 

40KHz (Nyquist limit 20KHz), a 3-level decomposition (as in Fig. 16) gives d0 with 

frequencies from 10KHz-20KHz, d1 from 5KHz-10KHz, d2 from 2500Hz-5000Hz, d3 

from 1250Hz-2500Hz and approximations with range of 0Hz-1250Hz. 

 

This looks like a constant-Q transform. Considering the time resolution of the 

coeff icients, this can be confirmed. Each detail l evel has half the time resolution of the 

previous detail l evel. The d0 coeff icients have a very high time resolution, half of the 

original signal. Further down the tree, localization in time lowers, but, on the other 

hand, the frequency bandwidth becomes smaller, resulting in better frequency 

resolution. This is the discrete wavelet transform (DWT). 

Level 0: d0

Level 1: d1

Level 2: d2

Level 2: a2

scale

 time

frequency

 time

b)a)

 

Fig. 17: Time- frequency and time- scale representation 

In literature, often the dimension of the levels is not called “ frequency” ; rather, the 

dimension is called scale (in the following chapter 4.4, it will be seen why). The output 

of the WT is therefore a time-scale domain. Like a spectrogram, wavelet coeff icients 

can be represented in a time-scale grid. Fig. 17 shows a comparison of the 

representation of the STFT and the WT. Evangelista calls this representation of the WT 

a cycle-octave time-frequency grid [PPR91, 121]. Each box stands for one output 

coeff icient of the forward transform. Due to the different time and frequency resolution, 

the boxes for each coeff icient do not have the same height and width for the WT. As in 

the sonogram, the color of a box represents the magnitude of the coeff icient. It can be 

well seen that the signal has a short transient in the third box of level 0 coeff icients. 

Using the STFT, this transient cannot be located equally well i n time. On the other 
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hand, the sound, which led to the 2nd coefficient of level 2, can be analyzed 

considerably more detailed for its frequency content than the STFT. However, the WT 

cannot locate it precisely in time. 

 

Generally, the number of levels is not limited, except the length of the signal. As each 

level works on half the number of samples, at some point, there will not be any samples 

anymore for decomposition. 

4.3.5 Wavelet Resynthesis 

As the filters for a wavelet filter bank need to be suitable for perfect reconstruction, 

resynthesis is done as described in chapter 4.3.3 on page 29. The detail and 

approximation coefficients are upsampled and filtered with the resynthesis filters. The 

sum gives the approximation coefficients for the next level. The process is repeated 

until level 0 has been resynthesized. The diagram in Fig. 18 shows the procedure. 

x

a2

↑2, F0

d2

d1

d0

Level 2

Level 1

Level 0

↑2, F1

↑2, F0 ↑2, F1

↑2, F0 ↑2, F1

 

Fig. 18: Wavelet resynthesis 

For a complete wavelet packet resynthesis, not all coefficients are needed. Therefore, 

wavelet packet trees normally do not split up every level in high pass and low pass, but 

only selected ones. 

4.4 Wavelet Functions 

This chapter is provided for completeness and for the better understanding of the theory 

behind wavelets. It is not meant to be a mathematically complete coverage. Wavelet 
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functions, and especially, the formulas, are not used in the work of this thesis, but they 

may help to understand the idea. It will be shown that the filter bank scheme is 

suff icient to calculate the wavelet transform. 

4.4.1 Generalities 

Wavelets are functions in continuous time that have special properties; usually the letter 

ψ is used for the wavelet function. The functions need to disappear towards -∞ and ∞. 

This leads to the term that wavelets are localized waves [STN96, xix]. Compact support 

is not required but useful in many cases. 

 

Another requirement is that the integral is zero29. Therefore, the wavelet needs to have 

at least one change of sign, making its shape look like a small wave – the name “wave-

let” is based on this property [SCH97, 111], being the translation of the French 

“ondelette” [JAS94, 6]. Wavelet functions are the analyzing grains, comparable to the 

sine waves for the FT. Fig. 19 shows 2 wavelet functions: a) the Daubechies 2 wavelet 

and b) the mexican hat30. 

 

Fig. 19: Typical wavelet functions 

4.4.2 The Continuous Wavelet Transform 

Two important operations on the wavelet function create infinite variations: shifting 

(moving in time, also called translation) and scaling (compressing in time, also called 

dilation).  

                                                 
29 Or the sum, for discrete wavelet functions 
30 See ch. 5.2 on p. 46 for a description of common wavelet famili es 
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The amount of shifting and scaling is indicated by the indices a (scaling) and s 

(shifting): 






=

a

t-s
ø

a
(t)ø sa

1
,  

Equation 3: Wavelet basis [PPR91, 54] 

ψa,s forms a basis, so that it is possible to represent all admissible functions with a linear 

combination of the wavelet functions. They are normalized with 1/ a  to preserve the 

energy in the wavelet domain [VAL99, (3)]. The special feature of the wavelet basis is 

that all the elements are derived from a single mother wavelet ψ [STN96, 3]. The 

continuous wavelet transform (CWT) analyzes a given function f(t) with the basis 

functions – the grains. 

∫= dtttfsaF sa )()(),( ,ψ  

Equation 4: Forward CWT [STN96, 82] 

Using the same function as compressed and shifted versions is called multiresolution. 

F(a,s) are coeff icients with which it is possible to reconstruct the original signal f(t)31: 
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ψ̂ : Fourier transform of ψ 
Equation 5: Inverse CWT [STN96, 82] 

It can be seen that the inverse CWT only exists if the term for the constant C exists, i.e. 

the integral for C is finite. This can be guaranteed when the integral of ψ is 0 [STN96, 

82]. 

 

The CWT as given in the equations is over-complete [STN96, 82]. The coeff icients 

F(a,s) are redundant. It is suff icient to scale the wavelet in powers of 2, as is done in the 

following discrete version. 

 

The over-complete output of the CWT is commonly displayed as a scalogram, li ke in 

Fig. 20. 

                                                 
31 For non-orthogonal wavelets, the inverse CWT uses the dual wavelet for resynthesis. 
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Fig. 20: Time-domain function and its scalogram of the over-complete WT32 

A scalogram is similar to the spectrogram, it displays the wavelet coeff icients in the 

planes time vs. scale (or level). As for the spectrogram, a scalogram is usually based on 

the energy of the wavelet coeff icients [CHA99, transformees/Transforms.html]. In the 

picture, slightly more than 30 levels are analyzed. Singularities of the time-domain 

function appear as cones – they have frequency contents in the entire spectrum. Finer 

levels have good time resolution, so the peak of the cone (at finest level) indicates the 

exact position of the singularity. 

4.4.3 The Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is calculated analogously to the CWT. Here is 

presented the dyadic DWT, which is scaled in powers of 2, resulting in the following 

discrete transform [STN96, 432]: 

)2(2 2
, ktj

j

kj −= ψψ  ∫= dtttfb kjkj )()( ,, ψ  

Equation 6: Forward DWT 

                                                 
32 The picture has been taken from [CHA99] 
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The bj,k coeff icients are the wavelet coeff icients, analogous to the F(a,s) coeff icients. 

The discrete inverse transform is straightly adding the translated, dilated wavelets, 

weighted by the coeff icients33: 

∑=
kj

kjkj tbtf
,

,, )()( ψ  

Equation 7: inverse DWT [VAL99, (13)] 

4.5 Connection of Filter Banks and Wavelet Functions 

Normally in practice, and in particular in this thesis, wavelet functions are not used for 

calculation of the DWT. And mostly, they are not even the starting point of 

development of a wavelet. Rather, they are derived from the low pass and high pass 

filters of the corresponding perfect reconstruction filter bank. For this, an auxili ary 

function, the scaling function φ  is introduced. It can be calculated using the dilation 

equation: 

∑
=

−=
N

k

ktkht
0

0 )2()(2)( φφ  
h0: low pass filter coeff icients 
N: number of f ilter coeff icients 
φ : scaling function 

Equation 8: Dilation equation [STN96, 22] 

As the dilation equation is recursive to itself, there is not always a solution for φ . The 

scaling function is a function in continuous time, but is not likely to be continuous; 

rather it may not be smooth and even contain jumps.  

 

Finally, the wavelet function ψ can be calculated from the scaling function with the 

wavelet equation: 

∑
=

−=
N

k

ktkht
0

1 )2()(2)( φψ  
H1: high pass filter coeff icients 
N: number of high pass filter coeff icients 
ψ: wavelet function 

Equation 9: Wavelet equation [STN96, 24] 

It can be seen that once the scaling function is known, the mother wavelet can be 

calculated directly – without recursion. 

 

                                                 
33 Also here, foot note 31 applies. 
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The filter bank calculation scheme has the same output as the DWT – the detail 

coeff icients are exactly the bj,k coeff icients calculated by the DWT. The scaling index j 

becomes the level, whereas the translation index k corresponds to the time plane in the 

filter bank. Therefore, it is possible to calculate the DWT entirely without wavelet 

functions, as it is done with the tree-structured filter bank. Each level of the filter bank 

corresponds to one scale of the wavelet. Consequently, when the filters are known, the 

DWT can be computed exclusively with the filter bank. As the filter bank uses 

decimation for the scaling, it is referred to as decimated DWT. 

 

The wavelet depends on the high pass filter; therefore it is logical that it creates the 

detail coeff icients for a decomposition using the CWT or DWT. On the other hand, the 

scaling function corresponds to the low pass filter, so by applying it, the remaining 

approximation coeff icients can be retrieved (analysis) or resynthesized. 

 

To sum up, Fig. 21 shows a) scaling function, b) wavelet function, c), d), e) and f) the 

filter coeff icients and g) the frequency responses of the analysis filters for the 

Daubechies 2 wavelet. The Daubechies wavelet family has reached an enormous 

importance and was first developed by Ingrid Daubechies. It is of order 2, 

corresponding to 4 filter coeff icients34. 

 

                                                 
34 More information on Daubechies wavelets will be given in ch. 5.2.2 on p. 46. 
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Fig. 21: Daubechies 2 wavelet 
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4.6 Properties of the Wavelet Transform 

The WT is linear. This means that the transform of the sum of 2 signals equals the sum 

of their transforms [PPR91, 59]. Furthermore, the transform conserves energy, i.e. the 

energy of the signal equals the energy of the coeff icients [PPR91, 59]. The local 

property of the grains allows localization of events of the original signal. 

 

Wavelets approximate the signal. Thus the shape of the wavelet determines the 

accuracy. One important aspect for the accuracy is the number of vanishing moments of 

the wavelet function. A wavelet with p vanishing moments can approximate a 

polynomial of order p-1 [STN96, 227]. Thus, the more vanishing moments, the more 

“concentrated” the wavelet coeff icients describe the signal [CHE96, chapter 2]. 

 

Furthermore wavelets can be classified according to [MMO96, 6-62] and [JAS94, 20]: 

• Whether the scaling function exists. This is true when the low pass filter is known 

and Equation 8 has a solution. 

• Whether filters exist (and thus the filter bank calculation scheme). Some wavelets 

are specified as a function for the wavelet function, and not all of them can be 

expressed as filters. 

• Orthogonality: whether the filter bank is orthogonal or biorthogonal. 

• Symmetry: Symmetric wavelet and scaling functions lead to respective symmetric 

filters. Compactly supported orthogonal wavelets cannot be symmetric both for low 

pass filter and high pass filter, as the alternating flip construction (Fig. 14) 

demonstrates. However, orthogonal wavelets can be antisymmetric. Symmetric and 

Antisymmetric filters are linear phase [STN96, 419]. 

• Compact support: Compactly supported scaling function and wavelet function lead 

to finite filters (FIR). Non-compactly supported wavelets should have a fast decay 

so that FIR filters can be approximated reasonably well . 

• Smoothness: For many signal processing applications, smoothness is important, as 

changed wavelet coeff icients shall result in a smooth output signal. Smoothness is 

connected to the regularity of the wavelet function. 
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4.7 Wavelet Applications 

Wavelets are used successfully for signal processing. Most prominent field is 

compression of digital signals. Quite established are wavelet algorithms in digital image 

processing. The abilit y of the WT to extract the main features (most important for the 

eye) results in high compression without loosing much quality. The compression quality 

showed to be superior to the usual JPEG compression, which is based on a FT. The FBI 

adopted wavelet compression for their archive of digital fingerprint images [STN96, 

364]. Also for video compression, wavelets are used successfully [VEK95, 431]. 

 

Noise reduction works well for similar reasons: low coeff icients are likely to contain 

uncorrelated wide-spectrum noise. By setting coeff icients below a certain threshold to 

0, the image can be denoised. This method works well for audio signals, too, and will be 

explained in more detail i n chapter 7.6. 

 

Other fields of signal processing, where the WT is eff icient, include detecting of 

singularities or breaks, determining long-term evolution of the signal, and pattern-

recognition [MMO96, ch.4] 

 

For sound processing, experiments have been done as described in [PPR91] and 

[CHE96]. Also compression of sound has been successfully developed with good 

results [STN96, 385]. 

 

Furthermore, wavelets can be used for linear algebra: [PTV94, 603f.] shows an 

application for solving linear systems eff iciently by using the wavelet transform, 

[MMO96, 4-48] demonstrates its application for fast multiplication of large matrices. 

4.8 The WT for processing real-time Musical Signals 

It has been anticipated that the WT provides some features especially useful for 

processing musical signals.  

 

Its multi resolution decomposition offers high temporal localization for high frequencies 

while offering high frequency resolution for low frequencies. A high frequency event 

(e.g. a cymbal crash) will be analyzed by many “ fast” , short, and high frequency 
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wavelets. Low notes will be analyzed by “slow”, long, low frequency wavelets. Non-

stationary transients can be located and analyzed well . Generally, this fails with Fourier 

analysis. 

 

The logarithmic decomposition of the frequency bands resembles human perception of 

frequencies. The WT offers logarithmically equal frequency bands (octaves) while the 

FT has logarithmically low resolution for low frequencies. The WT adopts all 

advantages of a constant-Q transform. 

 

For real time processing, the WT does not need a special window to be applied, as it 

decomposes the time by itself. So, the advantage of locality includes this advantage. 

 

Many aspects depend on the analyzing wavelet35. Investigation is needed, which 

wavelet is suitable for the specific application. Additionally, for computation of the 

wavelet decomposition, it has to be decided how many levels (scales) are calculated. 

The WT needs considerable more parameterization then the FT. 

 

The WT can be calculated eff iciently with the pyramid filter bank algorithm. Although 

it is of complexity O(n), computation is in general more time-consuming than 

computing the FFT [ROA96, 589]. However, it is fast enough for real-time analysis and 

resynthesis of audio data. 

 

The WT creates octave-wide frequency bands. So a fine analysis is not possible. Using 

more bands per level (scale) could be a solution, which has not been researched very 

much in respect to eff icient computer based calculation. For many applications, the 

bandwidth of the octaves is fine enough, but for e.g. pitch detecting algorithms, a finer 

frequency resolution is needed. 

 

In comparison with the FT, it can be said that the WT provides properties, which are 

well adapted for analyzing and processing real time audio data.  

                                                 
35 or on the corresponding filters 
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5 Choosing a Wavelet for processing Musical Signals 

Audio signals come in many different flavors. Classical music has different 

characteristics than speech, and both are again different to pop music. This thesis 

focuses on musical audio signals, without distinction of the characteristics. Speech 

signals could be regarded as a subset, so most assumptions for musical signals remain 

valid for speech signals. The idea is to develop algorithms that work well for many 

kinds of audio signals in real time. 

5.1 Requirements 

5.1.1 Quality 

The quality of wavelet decomposition especially depends on the abilit y of 

approximating the signal with wavelets. When the applied wavelet does not resemble 

the shape of the analyzed signal, the wavelet coeff icients will not extract the main 

“ features” of the signal – resulting in many non-zero wavelet coeff icients to 

approximate the signal. Thus, the better the analysis, the fewer significant wavelet 

coeff icients result – they can be described as “concentrated” coeff icients [CHE96, 

chapter 2, paragraph V]. 

 

Musical signals are always some kind of smooth wave, significantly smoother than 

pictures [STN96, 437]. Pictures may have sharp edges, fine lines and high contrast. 

Short filters corresponding to non-smooth wavelets li ke Daubechies 2 (see Fig. 21 on 

page 40) have proven to approximate well pictures. Musical signals, however, lead to 

the requirement of a suff iciently smooth wavelet, or in other words, a high regularity is 

preferred.  

 

The size of the transition band of low pass and high pass filters is an important factor, 

too. Larger transition bands (i.e. low steepness), cause high overlapping of low pass and 

high pass bands. So the output bands of the filter bank are not separated well , and 

aliasing effects are enforced when the coeff icients are changed [DEW97, 1899]. 

Especially in applications where the wavelet coeff icients are related directly to 

frequency (i.e. in pitch shifting), highly separated low pass and high pass frequency 
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response is important. Recursive wavelet filters have been designed which greatly 

decrease the transition band, however they need a special implementation and could not 

be researched further for this thesis [MAL98, 253]. 

 

Furthermore, linear phase response is crucial for high quality audio filters. When the 

filters do not have at least an approximate linear phase, certain frequencies are delayed 

in the wavelet domain. The inverse transform undoes this phase distortion. However, 

when the wavelet coeff icients are changed, unwanted modifications may occur to the 

frequencies, which are “out of phase”. Linear phase response can be achieved by using 

symmetric filters [STN96, 10]. 

 

Last, but not least, different wavelets have different temporal localization. Wavelets 

with short compact support can localize an event’s time better than others. So, for exact 

temporal analysis, a short wavelet is required, the faster decay the better. This conflicts 

with the abilit y of separation of the frequency bands and smoothness – there, longer 

filters provide better results [UYW99, 6]. 

5.1.2 Real-time Aspects 

Especially in a real time environment, wavelet transforms lead to the requirement of a 

suff iciently fast algorithm so that the processor is able to compute the forward and 

inverse wavelet transform faster than the resulting chunk is played. In the example of 

chunks of 23ms duration, any processing of the chunk may not take more than 23ms – 

otherwise the flow of chunks will have breaks. The faster the processing has been 

completed, the better, as the remaining processor time can be used for additional 

processing on the audio signal, operating system tasks, etc. Additionally, some 

headroom is required, so that the real-time environment operates stable at any time, also 

when high peaks of processor usage occur. This headroom needs to be especially large 

for operating systems with preemptive multitasking, as the system may interrupt the 

chunk processing at any time for other tasks [EFF98, 5-13]. 

 

As the length of the filters directly affects computation time of analysis and resynthesis, 

shorter filters are preferred. However, in general, more vanishing moments and smaller 

transition bands lead to longer filters [STN96, 216]. As this is preferred for audio filters, 

a reasonable compromise of f ilter length has to be found. 
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Computers normally process integer numbers faster than floating point numbers 

[KIE97, 36]. It would be an idea to use one of the integer-based wavelet transforms, e.g. 

following the procedure described in [CDS96] or [UYW99]. However, integer sample 

values are not very well suited for high quality sound processing, resulting in round off 

errors, unsmooth waves, causing alias effects. High-quality audio processing systems 

can be assumed to work with signals in a floating point format, so using an integer 

transform would be of littl e benefit, while reducing overall quality. All modern PCs are 

equipped with fast floating point processors, so the performance impact is not very 

important. Also, the increasing popularity of other programs using floating-point 

calculations extensively (i.e. 3D games) plays a role for processor manufacturers to 

develop high performance floating point processing units. 

5.2 Common Wavelets and their Properties 

Some selected wavelets and their properties are presented in this section. In general, 

constructing a wavelet is not a very diff icult task. However, highly sophisticated 

mathematics is involved when wavelets with special “good” properties are wished. All 

wavelets presented here were designed with such specialties, so their construction has 

not been trivial at all (maybe except Haar). 

5.2.1 Haar Wavelet 

The Haar wavelet is a special one. It has only 2 filter coeff icients, so a long transition 

band is guaranteed. The wavelet function is a square wave; smooth audio signals cannot 

be approximated well . It is the only wavelet that is at once symmetric and orthogonal 

[STN96, 152]. Regarding computation speed, it is perfect for real-time processing. 

However, the quality is not suff icient: any modification of wavelet coeff icients results 

in strong aliasing. 

5.2.2 Daubechies Wavelets 

The compactly supported and orthogonal wavelets created by Ingrid Daubechies in the 

late 1980’s gained much attention. They were one of the first to make discrete wavelet 

analysis practicable [MMO96, 1-31].  
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She constructed them by designing orthogonal filters with maximum flatness of the 

frequency response at 0 and one half the sampling rate (maxflat filters) [STN96, 164]. 

So the restriction for design was the highest number of vanishing moments for a given 

support width. For a given number of vanishing moments p, the filters have 2p 

coeff icients. The minimum support constraint leads to maximum temporal resolution. 

The resulting filters and wavelets are called Daubechies p or just Dp. For the special 

case of  p=1, the resulting wavelet is Haar [MMO96, 1-31]. 

 

Fig. 22: Daubechies wavelet family 

Most Daubechies wavelets are not symmetric – in contrary, some are very asymmetric. 

For small p>1, they are not smooth but still continuous. With increasing p, the wavelet 

function becomes smoother [STN96, 163]. For example, the D2 wavelet has 

singularities at the points p/2n (p and n integer) where it is left-differentiable but not 

right-differentiable [PTV94, 598]. Due to the flatness, the filters do not separate the 

frequency bands very well [DEW97, 1899]. The steepness of the filter’s frequency 

response is proportional to the square root of 2p [STN96, 172]. 

 

Fig. 22 shows a) D3 wavelet, b) D6 wavelet, c) D20 wavelet. In d), the respective filter 

responses are plotted. It can easily be seen that the higher the order p, the steeper the 

transition curve.  
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5.2.3 Other Orthogon al Wavelets 

Daubechies constructed a series of other orthogonal wavelets: “symmlets” have similar 

good features like the Daubechies family (compact support, p vanishing moments) but 

they were designed with the requirement to optimize symmetry and linear phase  

[MAL98, 252]. Still , as it is impossible for orthogonal wavelets, they are not perfectly 

symmetric. 

 

Another family of wavelets (also constructed by I. Daubechies) are the so-called 

Coiflets. She constructed them on request of R. Coifman36, who needed wavelets similar 

to the Daubechies family, but with an additional constraint on the scaling function: not 

only the wavelet function, but also the scaling function has to have p vanishing 

moments [MMO96, 6-66]. This has the advantage that the approximation coeff icients 

can be approximated by the signal samples themselves. However, the support, and 

therefore the length of the filters, is longer (length of f ilter 6p instead of 2p37), so this 

additional property costs eff iciency. 

 

A special wavelet family is the one of Meyer wavelets. The wavelet and scaling 

function are constructed in the frequency domain with an auxili ary function. Their 

support is infinite, but still t he functions have a fast decay [MMO96, 6-69]. They are 

infinitely differentiable; furthermore they are symmetric and orthogonal, but have no 

vanishing moments. FIR Filters cannot be constructed, so a filter bank implementation 

is not possible. 

5.2.4 “ Crude” Wavelets 

In [MMO96, 6-73], wavelets which lack many interesting properties are called “crude”: 

the Morlet wavelet and the mexican hat38 both have an explicit expression for ψ, but a 

scaling function cannot be constructed. They have neither compact support, nor 

vanishing moments, and are not orthogonal. Due to these limitations, filters cannot be 

                                                 
36 Often in literature, the name leads to the wrong conclusion that these wavelets were constructed by 

Coifman himself. 
37 In [MAL98, 253], a number of 3p coeff icients is implicitly specified, though the filter of coiflet of 

order p=5 has 30 coeff icients in Matlab. 
38 The mexican hat can be seen in Fig. 19 on p.35. 
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calculated, and only the forward CWT is possible. They are useful for mathematical 

demonstrations, as the wavelet function exists as a formula. 

5.2.5 Biorthogonal Wavelets 

There exist a number of well -studied biorthogonal wavelets. The major advantage of 

biorthogonal wavelets is the possibilit y to create symmetric transforms: both wavelet 

and scaling function are symmetric. This requires an odd length of both analysis filters 

[STN96, 111]. Biorthogonal wavelet functions and scaling functions are different for 

analysis and resynthesis, so for a filter bank transform, 2 analysis filters and 2 different 

resynthesis filters need to be used. Common practice for biorthogonal transforms is to 

indicate the analysis wavelet and scaling function with ψ~ and φ~ , respectively. 

 

It is apparent that the filters may have different properties for analysis and resynthesis. 

Consequently, useful properties for analysis are designed into the analysis filters (e.g. 

vanishing moments) while the resynthesis filters may be designed in respect to useful 

properties for reconstruction (e.g. regularity) [MMO96, 6-68]. 

 

Battle and Lemarié introduced biorthogonal wavelets based on polynomial splines. For 

splines of degree m, the resulting wavelet function has m+1 vanishing moments 

[MAL98, 248]. Unlike Daubechies wavelets, they are not compactly supported; finite 

filters can only be approximated by cutting of at the edges. However, the wavelet 

function has exponential decay, so reasonably truncating the filters does not introduce 

much error [COH93, 4]. Polynomial spline wavelet functions can be specified explicitl y 

in the frequency domain, and since they are polynomial splines, they are m-1 times 

continuously differentiable, resulting in quite smooth wavelets. For odd m, these 

wavelets are symmetric. An orthogonalization scheme allows making the Battle-

Lemarié family of f ilters orthogonal [MMO96, 6-71]. In short, spline wavelets provide 

maximum regularity with symmetry and minimum support [STN96, 258]. 

 

Other biorthogonal wavelets are Binlets, also based on splines (proposed in [STN96, 

217]). They are symmetric, have short support and the coeff icients are binary: all 
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coeff icients of a filter are integers divided by the same power of 2. This allows eff icient 

implementation on computers – division by a power of 2 is “natural” for computers39. 

5.3 Decision 

The parameterization possibiliti es of the wavelet transform provide a high degree of 

flexibilit y on its properties and performance. By fixing the wavelet and its parameters 

for the transform used in the example applications, the flexibilit y of the wavelet 

transform would be lost. It would degrade its potential; therefore no definitive choice 

shall be made. For example, when high separation of the frequency bands is needed, 

long filters with high demands on processing power are needed. By providing the length 

of the filters as a parameter to the user, the quality can be adjusted with respect to the 

performance of the computer. However, some decisions can be taken – mostly by 

exclusion.  

 

The demand for linear phase leads to symmetric biorthogonal wavelets. A high degree 

of regularity and frequency band separation is preferred. On the other hand, temporal 

resolution is not a major concern – steep filters are more important. Biorthogonal spline 

wavelets provide all these properties. Studies of wavelet transforms for audio or audio-

like signals agree on this ([CHE96, ch. 2], [DEW97, 1899], [STN96, 258]). 

Consequently, symmetric spline-based wavelets or Battle-Lemarié wavelets will be 

used for the example applications. Other wavelets are included for comparison 

purposes. 

                                                 
39 This is due to the internal binary representation of integers. Bit shift commands effectively divide by a 

power of 2. 
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6 Computer-based Algorithm of the Wavelet Transform 

This chapter outlines the implementation of the fast wavelet transform (FWT). The 

functions are used in the example applications in chapter 7. 

6.1 Algorithm 

The most important at first: the filter bank calculation scheme of the wavelet transform 

is the FWT ! So it is suff icient to implement the filter bank in order to have a fast 

calculation. As its complexity is O(n), it is among the fastest algorithms. 

6.1.1 General Algorithm 

The filter bank is applied recursively: each level (or scale) requires exactly the same 

algorithm. Furthermore, the high pass and low pass filters are the same for each level. 

So there is one function, which applies the filter bank to one level. An outer function 

successively calls this function for each level. 

 

Each analysis level takes a set of input coeff icients or samples and produces one set of 

detail coeff icients (details) and one set of approximation coeff icients (approximations). 

The number of each set of coeff icients equals half the input coeff icients or samples. The 

details are saved as output. The approximations are the new input for the next level. In 

this implementation, the filter bank is iterated until only 2 details and approximations 

are left – it is a nearly complete analysis. At the end of the decomposition, the overall 

output of the analysis transform is a set of detail coeff icients for each level, plus the 2 

approximations of the last level. As an example, when 1024 samples are analyzed, the 

forward transform produces 9 details: the 0th level has 512 coeff icients, the 1st 256, and 

so on. 

 

The inverse transform works analogously. It is started from the last level. To the 2 

details and 2 approximations the inverse filter bank is applied. The result is 4 

approximations, which are applied again to the inverse filter bank, along with the details 

of the before-last level. This scheme is repeated until the 0th set of coeff icients is 

resynthesized. 
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6.1.2 Matrix Representation 

In the following, the transforms are represented as matrices. As convention, upper case 

letters are matrices, lower case letters are vectors. In general, the (vertical) vector x is 

the input signal, ai are the approximations of level i , di the details of level i . Filters are 

denoted as the (horizontal) vector of the filter, where an index 0 stands for low pass and 

index 1 stands for high pass. Furthermore, h stands for an analysis filter, f for a 

resynthesis filter. Square brackets are used to indicate a specific element of a vector, 

numbering beginning with 0. So, h1[0] is the first analysis high pass filter coeff icient. 

Filters have N elements, the last element is N-1. The index s is used for the level. The 

original signal corresponds to the approximations of level “ -1” . 

 

A subscript T stands for the transposed matrix or vector. Empty elements in a matrix 

denote zeros. 

6.1.3 Forward Transform 

Following Fig. 16 on page 32, a one-level decomposition applies the low and high pass 

filters to the input and decimates each output. As a step-by-step algorithm, it would look 

like this: 

Convolution matrix for filter h: 
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Equation 10: Generic forward transform 

The convolution is not exactly li ke presented in Equation 1: the input signal is shifted 

“up” by N-2. Effectively, this creates a delay of N-2 samples in the wavelet domain. As 

this delay is frequency-independent (in contrast to phase distortion), there is no impact 

on quality. The inverse transform undoes the delay. 
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Fortunately, analysis can be integrated into just one matrix for a complete one-level 

decomposition. The first step to this is done by using the associativity of matrix 

multiplication: H is multiplied with U first. Effectively, this deletes every second row. 

An example with a filter of length 3: 
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Equation 11: Decimated convolution matrix 

Like this, decimation is done before convolution; it reduces the number of operations by 

the half. The second step is to create one convolution matrix Hd by appending the high 

pass convolution matrix below the low pass matrix. There will be only one output 

vector, which is composed of the approximations and appended, the details. This is 

called the direct filter bank matrix [STN96, 124.]. 

Direct form of the filter bank matrix: 
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Equation 12: Forward transform with direct filter bank matrix 

For an eff icient implementation of the direct matrix, the rows of '
0H  are interleaved 

with the rows of '
1H . After the first row of '

0H  comes the first row of '
1H , then the 

second row of '
0H , then second of '

1H , and so on. It is called the block filter bank 

matrix Hb (it is in block Toeplitz form or a polyphase matrix in the time domain [STN96, 

114]). The output vector is composed of the interleaved coeff icients of a0 and d0. The 

reason for this change of order is that in the computer algorithm, one loop is suff icient 

for calculating one approximation coeff icient and one detail coeff icient at once. 

Additionally, the input data is processed quasi-linearly, resulting in high locality of 

memory access. This optimizes performance as it favors the use of the fast cache 

memory of the processor. 
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6.1.4 Inverse Transform 

The inverse transform is based on Fig. 18 on page 34. Expansion is also integrated into 

the inverse direct filter bank matrix (here by deleting every other column). The 

derivation is analogous to derivation of Hd. The resulting transform looks like this: 

Expanded convolution matrix: 
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Equation 13: Inverse transform with direct filter bank matrix 

The implementation optimizes this again by calculating high pass and low pass in one 

iteration of the convolution loop. For this, the columns of Fd are interleaved, yielding 

the inverse polyphase matrix of the time domain. 

 

It is interesting to note that Fd is the inverse matrix of Hd. For orthogonal transforms, the 

inverse matrix is the transpose. And due to the construction of the inverse filters with 

order flip, i.e. f[i]=h[N-1-i], it can easily be seen that Fd is the transpose of Hd. For 

biorthogonal transforms (which are not orthogonal), Fd is biorthogonal to Hd and 

therefore the inverse of Hd. 

6.2 Implementation 

Once the matrices are set up, the implementation is straightforward. For a one-level 

decomposition and a one-level resynthesis there is each a function, which implements 

the respective block Toeplitz matrix. In both functions the matrix is traversed in rows 

from top to bottom. There is an outer loop for the columns and an inner loop for the 

rows. The next paragraph reveals that several alternative functions have been created for 

analysis and resynthesis, addressing the discussed problems. 
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For a complete analysis/resynthesis, these one-level functions are called iteratively for 

each level – as described in paragraph 6.1.1 on p. 51. 

 

A number of wavelet filters have been implemented: Haar, Daubechies, Spline 

biorthogonal, Battle-Lemarié, Symmlets and Coiflets, most of them in different versions 

with different number of f ilter coeff icients. 

6.3 Problems and Solutions 

6.3.1 Variable-length Arrays 

The wavelet coeff icients have a different length for each level. Additionally, for most 

extension schemes, this length depends on the filters. Furthermore, the number of levels 

depends on the size of the chunks. It is inconvenient and requires some overhead to 

create one array for each level. Also a dynamic creation of the arrays for each execution 

of the transform is quite time consuming. 

 

To address this problem, an own class is responsible for handling the variable length 

arrays of the coeff icients. Internally, based on the number of input samples and length 

of the filter, one large array is created. During analysis, the filter coeff icients are written 

successively to this array: first the details level 0, then details level 1, etc. The 

remaining approximation level is also written to the array, after all details. The start 

index and length of each level is stored separately. For wavelet-domain filters and 

recomposition, functions like getDetails(level, &count) provide fast access 

to the coeff icients. 

 

The complete array is never destroyed, so that new and delete operators do not 

decrease performance. Only in cases where the array is too small (e.g. the filter length 

has been increased), it is discarded and a new larger one is created. 

6.3.2 Filter Coefficients 

The filter coeff icients need to be provided to the transform functions. These are stored 

in static arrays. For each wavelet, the low pass filter coeff icients are specified in an 
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array. For biorthogonal wavelets, the high pass coeff icients must be specified in a 

separate array. These arrays are passed to the transform functions. 

 

A list of all available wavelet filters is statically constructed which contains the name, 

the different filter coeff icient arrays with their lengths, and whether it is orthogonal of 

each wavelet. An initialization function calculates the high pass filters for orthogonal 

filters with the alternating flip, and the inverse filters of all filters is calculated using the 

alternating signs pattern. At last, all filters are flipped: As the convolution matrix always 

uses the filters backwards (last coeff icient first), the reconstruction function can be 

simpli fied due to this flipped storage. 

 

Most filter coeff icients were calculated using the wfilters function of the wavelet 

toolbox of Matlab. For Battle-Lemarié and spline filter coeff icients, the lemarie and 

wspline functions of the Uvi_Wave toolbox for Matlab [SPG96] were used. 

6.3.3 Different Length of Biorthogonal Filters 

Biorthogonal transforms may have different length for low pass and high pass filter. 

Handling this is diff icult to implement eff iciently: by using the optimized block 

Toeplitz matrix, low pass and high pass filters are calculated in parallel. Different 

lengths would require a significant amount of checks to be made in the inner loop of 

calculation. For simplicity, biorthogonal filters are padded with zeros in order to have 

equal length. This has a negative impact on performance (see paragraph 6.3.5). Further 

optimization measures may address this point. 

6.3.4 Boundary Problems 

The presented matrices for analysis and resynthesis hide one aspect: how do they end? 

Apparently, the convolution needs N input samples, but for the last input samples, there 

are not N following samples. For example, to calculate the last coeff icient, convolution 

needs N-2 input samples after the last input sample. These do not exist. Another view of 

the same problem is with the wavelet functions: the first and last wavelet lap over 

outside the original window of input data. To address this problem, several common 

schemes exist which extend the input data (discussed in [STN96, 340], [MMO96, 6-47] 
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and [CHE96, ch. 2]). This is not an exhaustive list. However, the presented extension 

schemes seem to be the most used in wavelet processing. 

 

Circular convolution assumes the input vector to be symmetric. The input signal is 

extended with the first few samples. It can be implemented efficiently, as the last rows 

of the matrix just wrap around. The major drawback of this solution is that the time 

information of the wavelet coefficients is inaccurate for the boundaries: modifying a 

coefficient at the edge has an impact on the other edge when resynthesized. For real 

time audio processing, this behavior is not acceptable. With small chunks and long 

filters, it comes close to the periodic behavior of the STFT. 

 

Zero padding extends the input signal with N-2 zeros at end and beginning. This causes 

discontinuities at the borders. There are wavelet coefficients added, as the signal is 

effectively enlarged. For an input signal of length M samples, the 0th level has (M+N-

1)/2 details. On reconstruction, the padded values are discarded. 

 

Symmetric extension assumes the signal to continue symmetrically at the borders. For 

this, the signal is mirrored at the boundaries. It does not create discontinuities at the 

borders and yields relatively low error. Like with zero padding, there are wavelet 

coefficients added. 

 

Smooth padding extrapolates the samples at both boundaries. This is assumed to be 

good working for smooth signals, like audio signals.  

 

All presented schemes give perfect reconstruction when the wavelet coefficients are not 

changed. The different types of errors only occur when the wavelet coefficients are 

modified. 

 

The extension scheme only has an impact on the wavelet coefficients at the boundaries. 

The inner wavelet coefficients are the same with all extension schemes. Also, extension 

only plays a role for analysis: on resynthesis, the eventually added paddings are 

discarded. 
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In the implementation, the first 3 schemes are implemented as different analysis 

functions. Additionally, a variation of the symmetric extension using a history has been 

elaborated. The last N-2 samples and coeff icients of the previous chunk are stored in a 

history object. These values are used as the extension of the left boundary in the next 

chunk. A parameter controls which extension scheme is used. Unfortunately, the author 

learned of the smooth padding scheme shortly before finishing this thesis. Therefore, it 

could not be implemented anymore. 

 

Experimental results favor symmetric extension and history extension as the best-suited 

scheme from the implemented ones for musical signals: with different signals, they 

create smaller errors of the boundary samples than with zero padding or circular 

extension. It depends on the signal, which of the latter 2 schemes yields less error, but 

the subjective impression is always better with zero padding – the clicks due to the 

errors are less disturbing than with circular convolution. Also subjectively, symmetric 

extension and history extension sound best. Interestingly, they produce nearly the same 

amount of errors and sound equal. 

 

For the circular extension scheme, the function provided in [PTV94, 597] has been 

retaken. It has been used as a reference implementation. However, it can only handle 

orthogonal wavelets and the length of the input vectors is restricted to be a power of 2. 

Due to the bad quality of the circular extension, this function has not been revised for 

biorthogonal wavelets and arbitrary length of input vector. 

 

A “ real” extension could be done by delaying the signal: The last N-2 samples of the 

current chunk are used as extension. The last N-2 samples of the previous chunk 

become the first samples of the current chunk. The problem here is that extension needs 

to be done at each scale of analysis – the input signal would only provide the extension 

for the 0th level. 

6.3.5 Performance 

Like stated earlier, calculation speed of a real time filter is crucial for the performance 

and possibiliti es of the entire real-time system. Therefore, an optimized version of an 

analysis and a resynthesis function have been implemented. For the analysis function, 

only the zero-padding scheme has been implemented. However, the same optimizations 
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can be applied to the other analysis functions. As resynthesis is the same for all 

extension schemes (except for circular convolution), one optimized inverse function is 

suff icient. 

 

As a first optimization, all i ncrements are implemented with the “++” operator. A 

“+2”operation is replaced by applying twice the “++” operator. 

 

Secondly, the inner loop is cleaned: in the generic implementation, an if-command 

checks whether the signal or the extension is taken as input. In the optimized version, 

there are three outer loops instead of one; one for the left extension, one for the non-

extended signal and one for the right extension. This removes completely the inner if-

command. A littl e overhead is added for the 2 additional loop blocks. This is not 

dramatic: e.g. for a chunk size of 1024 samples and a filter length N=20, a full 

decomposition executes 23,360 times the inner loop block, while the entire 

decomposition function is only called 9 times. 

 

Furthermore, calculation of the filter coeff icient index is removed: the loop variable of 

the inner loop is adjusted so that it corresponds exactly the filter coeff icient index. This 

removes 2 additions per inner iteration. 

 

Another optimization is to remove indexed array access: accessing large array elements 

by an index has a negative impact on performance. Rather, the input signal is accessed 

with a typed pointer - instead of increasing the index for the array, the pointer is 

increased. This needs extra variables for the inner loop, but experiments confirm the 

positive influence. The same applies to the output arrays. Due to their relatively small 

array indexes, the filter arrays are still accessed with an index. As expected, tests with 

pointers for the filters showed worse performance.  

 

A test with unrolli ng the inner convolution loop did not have the desired effect: instead 

of a for-loop, the inner convolution statements are repeatedly copied in a switch-

case element with fall -through. By the switch-variable it is possible to define where 

the statements start and thus the number of calculated elements can is defined. So for 

each inner iteration, one if-statement (for checking the for-loop condition) and one 
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conditional jump has been removed. But, unfortunately, this resulted in a slower 

execution. The optimization of the compiler seems to work well for for-loops. 

 

Benchmarks show the effect of these measures: on the test system40, with chunk size 

1024 samples and filter length N=20, executing consecutively the generic forward and 

inverse transform takes 2.97ms processor time, whereas the optimized functions do it in 

2.21ms, a performance increase of about 25%. With a filter length of N=40, 6.25ms and 

4.76ms are used, respectively, yielding an optimization of about 24%. These values are 

approximate mean values: the processor usage varies from chunk to chunk of up to +/- 

0.2ms, so an exact benchmark is impossible. 
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Fig. 23: Performance of the transform algorithm dependent on filter length 

Fig. 23 ill ustrates the processor usage of the transform algorithm. The time is nearly 

proportional to the length of the filter. This manifests the complexity of O(n) also in 

respect to the filter length. The diagram does not reveal that the relative performance 

gain remains approximately constant – at around 24%. 

 

More performance gain can be obtained by hard coding the filter coeff icients and 

unrolli ng the inner loop as demonstrated in [PTV94, 596]. Further improvements can be 

made to handle biorthogonal wavelets: firstly, the already mentioned zero padding of 

filters with different length may be replaced by eff icient handling of different lengths. 

Secondly, the symmetric property can be used to optimize even more. 

                                                 
40 Intel Pentium II , 400MHz with 512KB second level cache. 
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7 Applications of Wavelets in Real Time Digital Audio 

This chapter presents the program that has been written to use the wavelet transform for 

real time audio processing. 

7.1 Coding Style 

The author has a strong programming background in Java. This leads to a Java-like 

design of the C++ classes. The differences to standard C++ coding style are listed here. 

7.1.1 Naming Conventions 

As in Java, all names in the implementation are a concatenation of words, first letter of 

each word capitalized. Class names start with a capital letter; fields and variables start in 

lower case. 

7.1.2 Interfaces 

As C++ does not provide the concept of interfaces, they are implemented as abstract 

base classes. By multiple inheritage, they are attached to other classes. In this 

elaboration, these classes are called an interface. While this is not true in a C++ sense, it 

is true for their function and usage. 

7.1.3 Object Orientation 

The entire framework is designed purely object oriented. To this extent, fields are 

generally private or protected and get/set methods allow access to them.  

7.2 The Audio Framework 

A set of core classes has been designed to handle real time audio streams. In the 

following, their main features are presented. Appendix A provides descriptions of all 

classes and a class inheritance tree of the core classes can be found in Appendix B. 
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7.2.1 Audio Format 

The audio framework uses exclusively linear floating-point samples. When data 

originate from a different encoding (e.g. PCM), they have to be decoded prior to be used 

in the audio streams. 

 

Furthermore, audio data may come in several channels, e.g. stereo with 2 channels. The 

implementation can handle any number of channels. Channels are stored in parallel 

buffers. Interleaved samples (e.g. originating from audio files) are separated. 

 

Another important parameter of the audio format is the sample rate. The framework 

works well with any sample rate. 

 

The class AudioFormat stores the information about number of channels and sample 

rate. It also provides methods to transform a number of samples to ms and vice versa. 

For example, this serves to calculate the memory requirements and playing time of a 

buffer. 

7.2.2 General Architecture 

Streaming of audio data is implemented as a sequence of chunks of audio data. They are 

managed by the class SampleBuffer. The different sources (interface AudioReader), 

modifiers (interface AudioFilter) and destinations (interface AudioWriter) of the buffers 

are linked to form a chain. Sample buffers from sources and modifiers are pulled, 

buffers to destinations are pushed. In between is a synchronizer, which first pulls all 

data from the streams and then pushes it to all writers (class AudioSynchronizer). The 

timing reference is provided by a ticker, which fires an event when a new buffer needs 

to be filled (interface TickProvider). 

 
Audio Source 
e.g. audio file 

Modifier 
e.g. denoiser Synchronizer 

Destination 
e.g. speaker 

Ticker 

Legend 
  audio f low  
  event f low  
  audio pull 
  audio push 

 

Fig. 24: Audio streaming example 



7 Applications of Wavelets in Real Time Digital Audio  

 - 63 - 

An example of such a chain is presented in Fig. 24. Its architecture plays a file, which is 

modified using a denoiser. The audio flow arrows show the way of the audio data, push 

and pull operations are marked as gray arrows. More examples can be found in 

Appendix C. 

 

The ticker plays a central role to synchronize the audio processing with time. It provides 

a stable clock, which depends on the length of the sample buffers. An event, the tick, is 

generated at regular intervals of the time of one sample buffer. A tick event is the signal 

to start filli ng the next buffer. As the TickProvider class is an interface, virtually any 

class may become a ticker. An useful class for a tick provider is for example the class 

that outputs data to the soundcard: the ticks can be synchronized with the timing of the 

soundcard, guaranteeing that no buffer arrives too late or comes too soon. 

 

Once such a tick event arrives at the synchronizer, it initiates the pull chain: it asks the 

module “before” to fill t he provided sample buffer. The asked modifier will ask its 

previous module, and so on. The first element in a chain finally will fill t he passed 

buffer. Then the chain is proceeded back, in direction of the audio flow, each module 

filli ng or modifying the sample buffer. When the sample buffer arrives at the 

synchronizer, it pushes it to the modules “after” it. In this case, it is only one module, 

the speaker – on PCs mostly driven by a soundcard device. 

 

One auxili ary class, AudioMixer, is provided. It does not really belong to the 

framework’s core, but is useful in any implementation. However, it need not be used, it 

is provided with the framework for convenience. It is the reference implementation for 

an AudioReader that reads from several inputs and applies modifiers to the stream. 

7.2.3 Extensions 

The framework’s core classes only provide the interfaces and some implemented classes 

like SoundBuffer. They do not include real functionality or chained components. All 

sources, destinations and modifiers have to be implemented as independent 

extensions41. This allows compili ng the extensions into dynamically loaded libraries, 

                                                 
41 Implementing the interfaces AudioDeviceReader, AudioFileReader, AudioDeviceWriter, 

AudioFileWriter and AudioFilter. 
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opening the possibility to extend the audio framework with new extensions without 

recompiling the main program. Loading of the extensions is not part of the core 

framework. It has to be provided by the main program, which uses the framework. 

 

An additional extension type exists: encoders and decoders. They have the task to 

decode from a certain encoding to linear floating-point samples, and encode vice versa. 

The source and destination extensions can query the available encoders and decoders. 

7.2.4 Independence of the User Interface 

The entire framework, and especially the extensions, is generally independent of a UI 

and do not implement a user interface42. As many extensions (especially filters) may 

need to be configured by the end user, an interface for parameters is defined. Each filter 

implements some methods to query the parameters: number of parameters, and for each 

parameter: name, value range, type of display (slider, checkbox, combo box). How the 

parameters are displayed to the user depends on the UI. It would be possible to provide 

all parameters in a console-based UI. Also, automation of parameters can be achieved 

fairly easy. Furthermore, the filters can deliver feedback to the UI: when a filter 

changed a parameter by itself, it can send a notification back, so that display of the 

respective parameter can be updated. With this mechanism, informational parameters 

are implemented: to the end user, no possibility is given to change this parameter. It 

only displays a string. In this fashion, the statistics filter (see ch.7.4.6 on p.73) lets the 

calculated statistics of the audio stream be displayed. 

7.2.5 Flexibility 

Flexibility has been an important aspect for the design of the framework. As noted 

before, arbitrary sample rates and any number of channels can be used. No limits apply 

to chaining the modules: audio flow can be split up, combined, interrupted, etc. Of 

course, this depends also on a clean implementation of the extensions. The existence of 

the extension mechanism itself also offers a high degree of flexibility. 

 

                                                 
42 Unless they provide graphical output, like the wavelet domain display filter (ch.7.4.3, p.70) 
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7.2.6 Performance 

As the classes are used in real time, processor usage of the real time functions is to be 

minimized. Where possible, operations and calculations were implemented in functions 

that are not called in real time. E.g. temporary memory blocks are allocated once at 

beginning of real time operation instead of allocating and deallocating during real time 

usage. More measures to improve performance are detailed in the descriptions of the 

extensions in chapter 7.3 on pp.67f. 

7.2.7 Robustness 

A major concern of a real time audio framework is its robustness. It must run stable 

even in exceptional situations. The core system has not a significant impact on 

robustness: as the actual implementation is done in the extensions, robustness is mostly 

dependent on them. Chapter 7.3 on pp.67f. discusses the considerations on robustness 

for the relevant extensions. 

 

Programming errors, which could e.g. lead to null pointer exceptions or memory 

leakage, are also crucial for robustness. Though, this is not specific to an 

implementation of an audio framework. Thorough testing and memory checks were 

made to minimize the probabilit y of remaining errors li ke these. Also, extensive error 

handling is necessary for robustness and has been implemented as described below. 

7.2.8 Error Handling 

For consistent error handling, a set of C functions has been retaken from the author’s 

work on the Studienarbeit [BOE99]. It provides centralized functions for outputting 

trace, debug and error messages. All messages are classified with a level. It is 

configurable, which levels cause a message or not. The output is also configurable: for 

console applications, it may be output on the console. GUI applications can present a 

dialog box in case of an error message and list other messages in a list box or similar. 

Additionally, all messages may be logged to a file. Exceptions are not used to favor 

portabilit y. 
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7.2.9 Portability 

The entire framework and most extensions are written in respect to portabilit y to other 

platforms. Use of standard C++ should make it fairly easy to use the audio framework 

on other systems than Windows, where the framework has been developed and tested. 

Though, there are 2 classes, which need system-dependent implementation: Lock and 

Thread. They are declared as external in the core header file. To compile a program, an 

implementation of these classes must be linked to it. As not all platforms support 

threads, they must be implemented as dummy versions, which create an error when 

used. Threads are not used in the core system. 

 

Thread provides an encapsulation for the system’s mechanism for threads. Like this, an 

extension, which is system-independent except for the need of threads, becomes 

platform independent. Methods like run and terminate allow control of the thread. 

The run method takes as parameter a class that implements the ThreadRunner 

interface. ThreadRunner declares only one method: threadRun. It is called in the 

context of the newly created thread. Once it is finished, the thread has terminated. 

 

For thread synchronization, Lock allows exclusive execution of a portion of code for 

only one thread at a time. Two methods, lock and unlock define the exclusive 

region. Locks may be implemented with mutex’s or semaphores. Only with the use of 

locks, an application can be made thread-safe. Consequently, it has been used 

extensively in many classes. 

 

Also one global function with system-dependent implementation is declared in the 

audio framework: HighResolutionTime returns a counter with very high precision. 

This can be used for performance measurements and benchmarks. 

 

These system-dependent declarations are implemented for the Windows platform. The 

Lock is implemented using a Windows-specific critical section. 

HighResolutionTime returns a timer register of Pentium-class processors. 

Windows disposes of a function that enables to query it. On non-Pentium class systems, 

it simply returns 0. 
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7.3 Implemented Extensions 

Here, the extensions of the framework are detailed. The “filters” – audio modifiers – are 

presented in the next chapter, although they are also part of the extension framework. 

Appendix A.3 lists descriptions of all extension classes. 

7.3.1 Codecs 

One codec extension is provided. It handles conversion from and to PCM audio data. 

The number of bits per sample must be passed to the codec so that it knows how to 

interpret PCM samples. 

7.3.2 File IO 

Two extensions handling files of the common format “Microsoft wave” are 

implemented: WaveFileReader subclasses AudioFileReader and provides an 

AudioReader which gathers the input audio from a file. Conversely, WaveFileWriter 

(derives from AudioFileWriter) is an AudioWriter, which writes the pushed data to a 

wave file. For format conversion, they use the codec extensions. Currently, only the 

PCM codec is supported. This can be enhanced easily. The wave file reader and writer 

are platform independent (although the file format originates on Windows). 

7.3.3 Audio Devices 

In order to play and record sounds, the 2 extensions DirectSoundWriter and 

MMEReader exist. As soundcard access is highly platform-dependent, these work only 

on Windows.  

 

For device access, latency is a crucial factor for real time digital audio: the slower the 

soundcard, respectively the more time it needs to process a chunk, the higher the latency 

of the entire system. Real time behavior may only be achieved with total latency of 

under some 100ms. Higher latency than 400ms results in a noticeable delay – e.g. 

changing a parameter of a filter is audible later, which is very inconvenient. Other 

components of the audio framework do not add significant latency43. Consequently, it 

was the aim to provide minimum-latency access to the soundcard. 

                                                 
43 except when a delay is implemented by design 
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Another important aspect is stability: even a 10ms break of the flow of audio data 

disturbs significantly (and destroys a recordings). So the soundcard must be accessed in 

a way that minimizes the risk of unwanted breaks. Additionally, all exceptional 

situations have to be handled cleanly. If the audio framework is too slow to push the 

chunks in time to the DirectSoundWriter (buffer underrun), a good reaction has to be 

implemented Conversely, pushing the chunks too fast (buffer overflow) must be 

considered, too. Underruns and overflows exist in the same sense for the MMEReader.  

 

Exception handling needs to minimize audible effects and let the system remain stable. 

In both classes, a circular buffer is used for handling these exceptions: too many pushed 

buffers overwrite old ones, so it results in a jump in playback. When the buffers arrive 

too slowly, the circular buffer contains too little samples for playback and silence is 

appended. For the MMEReader, underruns cause silence to be generated and overflows 

(i.e. the chunks are not pulled fast enough) cause skipping of recorded audio data. 

 

The extension names reflect the driver model they use: DirectSound is a relatively new 

model to access the soundcard on a very low level basis. While being quite complicated 

to implement, it rewards with low latency. The speed of the soundcard is supposed to be 

used to the maximum extent. DirectSound, initially developed for game sound, evolved 

continuously with the time. Meanwhile, DirectSound version 8 is about to be released. 

However, the Windows NT platform only supports up to version 3, therefore in this 

implementation, only features of version 3 have been used. In general however, 

DirectSound offers lower latency on Windows 95, 98 or 2000. There, DirectSound 

offers latency as low as 20ms. 

 

For recording, a DirectSound architecture exists, but unfortunately only in version 5 and 

later. Therefore, MME, the older driver model of Windows, is used. It dates back to the 

times of Windows 3.1 and exists on all Windows platforms since then. Highly evolved 

soundcard drivers provide good performance: with this implementation it is possible to 

have latency down to 69ms. 

 

Both DirectSoundWriter and MMEReader implement the AudioTickProvider interface. 

This offers direct synchronization with the soundcard: for playback, a tick event is fired 
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when one sample buffer may be pushed. For recording, the event is fired every time 

when the number of samples of one sample buffer has been recorded. 

7.4 Implemented Filters 

In this chapter, the term “ filters” does not necessarily stand for frequency modification: 

it means an audio framework extension for modifying audio – implementing the 

AudioFilter interface. Some of them are auxil iary filters that supported development of 

this thesis. 

 

The main filter extensions and their implementation are presented in detail i n chapters 

7.6f. Appendix A.4 provides a list of all classes. 

7.4.1 Wavelet Transform 

These 2 filters, WTForwardFilter and WTinverseFilter encapsulate the wavelet classes 

elaborated in chapter 6 on pp.51f. as filter extensions.  

 

WTForwardFilter performs the forward wavelet transform on the current chunk. The 

Parameters allow choosing a wavelet and the extension scheme. Furthermore, an 

eventually existing optimized version can be selected. In order that following filters can 

access the wavelet coeff icients, a special field in SampleBuffer is assigned a 

WTFilterInfo instance, providing information about the effectuated transform and the 

calculated coeff icients in a WaveletCoeffs object. Following filters, which need the 

wavelet domain, can check this field; if it exists (i.e. not equal to NULL), they use the 

wavelet coeff icients, nothing is done. 

 

WTInverseFilter applies the inverse WT to the wavelet coeff icients, if existent. The 

resulting time domain samples are written to the SampleBuffer. An information field 

provides the DC offset difference: the last sample of the last buffer is compared to the 

first sample of this buffer. The lower the difference, the smoother is the resulting 

boundary. It serves as an estimator for quality: higher difference creates audible 

discontinuities. To overcome the discontinuities at the boundaries, 2 special modes are 

implemented. They shift the entire signal to compensate the border discontinuities. 

Though not guaranteeing continuous 1st or higher derivatives, a significant improvement 
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of clicks at the boundaries can be achieved. However, as the samples are shifted up or 

down, the DC offset is modified and therefore dynamic range decreased. This is 

unacceptable for high-quality audio processing; consequently this feature is used for 

experiments only. 

7.4.2 Show Wavelet Function 

Showing the wavelet function ψ is done by a simple trick: setting all wavelet 

coefficients to zero, except one single coefficient, will result in the time-domain wavelet 

function (the grain), created by the inverse transform. This filter allows controlling the 

scale, temporal position and amplitude of the single non-zero coefficient. By adding a 

time domain display filter (see ch.7.4.7, p.73) after the inverse WT, the wavelet function 

can be seen and explored. Changing scale and time shows the effects of dilation and 

translation. 

 

The ShowWLFunctionFilter is an effective means to better understand wavelets and 

their implementation as filter banks. Furthermore it serves as validation of the inverse 

wavelet transform and the selected wavelet. 

7.4.3 Wavelet Domain Display 

This filter is specific to Windows platforms. A window is created which displays all 

wavelet coefficients in the time vs. scale domain (see Fig. 25), also called the 

scalogram44. The amplitude or power of a coefficient is represented as colors. As this is 

done in real time, every modification of the wavelet coefficients can be monitored 

visually. The extension schemes (see chapter 6.3.4 on p.56) and their behavior with 

different wavelets can be compared intuitively. The window can be resized to any 

wished size. 

 

Many options of the WaveletDisplayFilter allow to control display and function. 

Paddings can be shown optionally, and coloring can be based on absolute amplitude or 

energy of the coefficients. The color mode parameter allows different color palettes to 

be used: examples are gray values or fading from red to blue. A good result delivers a 

color palette, which fades from blue colors for low coefficients over red to yellow.  

                                                 
44 more information in ch.4.3.4 on pp.31f. 
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Another parameter controls scaling of colors: e.g. when all coeff icients are quite low, 

scaling the colors up improves visibilit y of the coeff icients. The “vertical scale” 

parameter chooses the relative height of the different scales of the coeff icients’ scales. A 

vertical scale parameter of 1 shows the constant-Q: every scale has the same height. The 

other extreme value of this parameter, 2, shows linear frequency range for the scales, 

each scale has double the height as the next scale. 

 

Furthermore, multiple consecutive chunks can be shown at once with the “number of 

chunks” parameter. 2 parameters control the speed of display: the first allows pausing a 

specified number of chunks after display of a chunk. This slow motion mode allows 

studying individual chunks in more detail . It is synchronized with the same parameter in 

the time domain display (ch.7.4.7 on p.73). Like this, time domain and wavelet domain 

can be compared eff iciently. The second speed control allows switching to 

“synchronous” display: the window is painted while the chunk is processed. If this 

parameter is switched off , a message is sent to Windows to initiate a repaint of the 

display as processor time permits. The latter results in a slower display (i.e. intermediate 

chunks cannot be seen), but only uses processor resources when available.  

 

Fig. 25: Wavelet domain display filter (vertical scale=1.5) 
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7.4.4 Noise Generator 

This filter adds white noise to the audio stream. Essentially, white noise consists of 

uniformly distributed random values. They are retrieved by the C function rand(). A 

parameter allows the choice of using directly the normalized random values or to create 

gaussian noise: it has zero mean, unit variance and a gaussian (or normal) distribution 

by using the Box-Muller method. The gaussian noise implementation was inspired by 

[EMB95, 158]. A second parameter lets control the volume of added noise. The filter is 

system-independent. It is used for validation and testing of the noise reduction filter 

(chapter 7.6 on pp.78f.).  

7.4.5 Difference Listener 

For comparison of the original and modified audio signal (e.g. modified by the equalizer 

filter), the difference of both signals can be used. The difference signal contains the 

amount of samples that have been changed. The amplitude of the difference samples 

represents the amount of change. This filter is used for 3 main applications:  

 

Listening to the different signal can give instantaneous, intuitive information about the 

applied modifications. Frequency content and amplitude can be estimated quickly. 

 

Statistics on the difference signal provide important quantitative results. This can be 

done, e.g. with the statistics filter explained in the next paragraph. 

 

An additional usage of this filter is to reverse the effect of a filter: for example, the 

difference of a low pass filter results in a high-pass filtered signal. 

 

The implementation is done by 2 filters: DifferenceBeginFilter and 

DifferenceEndFilter. The first takes a snapshot of the current audio stream. The 

DifferenceEndFilter calculates the difference of the current signal and the snapshot. 

Thus, all filters that are to be analyzed with the difference signal need to be applied in 

between this pair. Both filters do not have any parameters and they are platform-

independent. 
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7.4.6 Statistics Filter 

This platform-independent filter calculates constantly some statistical data on the audio 

stream. They are provided as informational parameters and can be displayed by the 

GUI. 4 values are calculated: minimum sample value, maximum sample value, mean 

value (DC offset) and energy. An additional parameter lets the user control how often 

the values are displayed. 

 

The StatisticsFilter provides data that can be used for quantitative estimation of the 

quality of extension filters (with the difference listener) or to validate signals, e.g. from 

the noise generator. 

7.4.7 Time Domain Display 

A time domain representation of the signal is displayed by the TimeDisplayFilter in the 

dimensions time vs. amplitude. Like for the wavelet domain display (chapter 7.4.3), a 

separate window is opened – so it is also specific for the Windows platform. Most 

parameters are analogous to the parameters of the wavelet domain display. Here, the 

“vertical scale” parameter allows stretching/compressing the display on the vertical 

axis. Pausing of chunks is synchronized with the wavelet domain display: when both 

pause the same amount of chunks, they display exactly the same chunk(s). As it is 

possible to display more chunks at once than the number of paused chunks, a scrolli ng 

view of the waveform can be created. 

 

The time domain display is needed to display the wavelet functions with the 

ShowWLFunctionFilter described in chapter 7.4.2. 

7.4.8 Miscellaneous Filters 

2 filters are implemented which were only used for auxili ary purposes. 

 

The DelayFilter adds an echo to the signal. Short portions are repeatedly added to the 

signal, with decreasing volume. 2 parameters allow controlli ng length of the portion and 

amount of attenuation for repeated portions. It has been the first developed filter and 

was used for validation and support of development of the audio framework. 

 



Wavelets in real time digital audio processing 

 - 74 - 

The BWLowpassFilter implements an IIR low pass filter by using the Butterworth filter 

design. The implementation has been taken from [BAL98]. 3 parameters are offered: 

gain, cut off fr equency and resonance. Due to its IIR design, this Butterworth filter has a 

fairly high steepness. It showed to be helpful for visualizing the amount of separation of 

the filter bands of the wavelet transform: frequency bands above the cut off fr equency 

should contain zero or small wavelet coeff icients. Different wavelets can be compared 

using the wavelet domain display (see ch. 7.4.3). 

7.5 The GUI 

A GUI has been developed for the Windows platform. It does not use all of the 

framework’s possibiliti es: a simple chain with 2 readers and 2 writers is used. In-

between can be put any number of f ilters. A diagram of the chain can be seen in 

Appendix C.1. 

 

The flow of audio data is symbolized with arrows, as can be seen in the screenshot (Fig. 

26). With a checkbox, the sources and destinations can be activated. A help button 

provides basic instructions on how to use the GUI. 

 

Fig. 26: Screenshot of the GUI 

The screenshot shows an example of using the wavelet denoiser: noise is added to the 

audio signal with the noise generator (ch.7.4.4). In the wavelet domain (wavelet filters, 

ch.7.4.1), the signal is denoised using the denoise filter (see ch.7.6). The wavelet 

domain is visualized with the wavelet domain display filter (ch.7.4.3), where the effect 

of different denoising parameters can be followed visually. Finally, the entire set of 
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filters is surrounded by the difference listener (ch.7.4.5). This allows to hear the 

difference signal of original and denoised signal. If denoising were perfect, the 

difference signal should be complete silence. Any existing sound in the difference 

signal corresponds to unwanted modifications done by the noise reduction filter. This 

setup allows finding the right parameters for the denoiser eff iciently. A slightly different 

setup, with the “Difference Listener Begin” filter applied after the noise generator, 

would allow listening to the noise, which has been removed by the denoiser. 

7.5.1 Soundcard IO 

Audio data can be retrieved and played using the soundcard. The extensions 

MMEReader and DirectSoundWriter are used for that. For the soundcard input, a slider 

lets the user control the volume of the audio data that is 

fed into the system. While running, the running time of 

the respective reader or writer is displayed in 

minutes:seconds:ms (see Fig. 27). 

 

Internally, the soundcards are used in 16bit resolution, 44100Hz sample rate and in 

stereo. Consequently, the entire application runs at 44100Hz, with 2 channels. 

 

A setup dialog (see Fig. 28) lets the user 

choose the soundcard (if several soundcards 

are installed in the computer) and define the 

buffer size. The buffer size determines 

directly the latency. Furthermore, it displays 

when buffer underruns or overflows occur. 

The setup dialog is invoked by pressing on 

the respective “Settings” button. The setup 

dialogs for input and output have the same 

layout and functionality. 

 

The tick source (see ch.7.2.2 on p.62) is assigned dynamically: if available, the 

soundcard output (DirectSoundWriter) is used, otherwise, the soundcard input 

(MMEReader) is used. 

 

 

Fig. 27: Soundcard input 

 

Fig. 28: Soundcard setup dialog 
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By activating both soundcard input and soundcard output, an audio loop is created: the 

signal that comes into the soundcard is immediately routed to the soundcard output, 

with eventual processing in between. This corresponds to the behavior of a stand-alone 

effects generator: it can be used for li ve presentations, recordings, etc. For example, if a 

user wishes to copy a record to CD using a stand-alone CD recorder. Music from the 

record shall be denoised using the noise reduction filter (see ch.7.6). The user would 

connect the record player to the soundcard input, and the soundcard output to the CD 

recorder. On the computer runs this application with soundcard in and out activated. 

Like this, the CD recorder burns a CD with the denoised music. 

7.5.2 File IO 

To use a file as input, either exclusively or in addition to 

soundcard input, a filename has to be provided in the 

text field, and the file input checkbox has to be 

activated. This feeds the audio data of the file into the 

flow of the system. As for the soundcard input, a slider 

lets the user control the volume. The “loop” checkbox lets the file be played repeatedly. 

Fig. 29 shows an example: the file “dnbloop.wav” is played repeatedly with full 

volume. The current playing position is 5 seconds and 712ms. 

 

The file output works analogously: when a filename is entered in the text field, 

activating it causes a wave file to be created to which is written continuously the output 

of the system. When the file output is deactivated, the file is closed and can be used 

further: e.g. one can enter the filename in the file input box and use it as input audio 

stream, or it can be burned to a CD. 

 

For file IO, the extensions WaveFileReader and WaveFileWriter are used (see ch.7.3.2, 

p.67). Consequently, only audio files in the format Microsoft Wave are handled. 

Furthermore, as the program uses exclusively 44100Hz sample rate, only files with this 

sample rate are accepted as input; generated files will have this sample rate. Mono input 

files are transformed into a stereo stream. 

 

Fig. 29: File input 
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7.5.3 Filters 

Any number of f ilters can be inserted in the audio flow. A list displays the integrated 

filters. Internally, an AudioMixer class is used (see ch.7.2.2 on p.62). This class also 

mixes the 2 input streams from soundcard and file input. 

 

Buttons control the chain of f ilters: the “Add” 

button presents a dialog, which contains all 

filters, registered as an extension (Fig. 30). The 

name of each filter is retrieved by querying the 

filter object. Clicking on a filter name displays a 

short description of the filter. Also the 

description is provided by the filter itself. 

Pressing “OK” appends the selected filter to the 

list of f ilters. One filter type can be added any 

number of times. 

 

The ”Del” button removes a selected filter from the list. The filters are applied in the 

order in which they appear in the list. To change the position of a filter, the up/down 

buttons are used. 

 

The “setup” button displays a dialog, which contains all parameters of the selected 

filter. The dialog is created dynamically: the respective filter object is queried for the 

attributes of the parameters. For each 

parameter, the corresponding GUI element is 

created: a slider, a checkbox, a combo box, or 

only an informational field. Fig. 31 shows the 

setup dialog for the “wavelet domain display” 

filter, demonstrating the first three types of 

GUI elements. Additionally, for each setup 

dialog, a checkbox on top left lets control 

whether the corresponding filter is active (this 

is not a parameter of the filter). On top right of 

 

Fig. 30: Add filter dialog 

 

 

 

 

Fig. 31: A filter setup dialog 
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the dialog, the relative processor usage is displayed: it is calculated with the 

HighResolutionTime function (see ch.7.2.9 on p.66). 

 

As the dialogs are generated dynamically, several dialogs can be displayed at once, one 

dialog for each filter. 

7.6 Noise Reduction 

7.6.1 Overview 

Noise is an unwanted, often wideband sound, which is generally unwanted. It reduces 

the dynamic range of a system. Many different types exist; correlated and uncorrelated 

to the signal’s amplitude or its frequency, continuous “noise floor” or noise transients. 

The most frequent is a wideband noise floor. It occurs in many elements of an electronic 

audio system: analog circuits li ke ampli fiers, ADC’s and DAC’s add quantization noise, 

tape recordings have “tape hiss” . Many elements like cables reduce the signal’s 

amplitude, reducing signal-to-noise ratio (SNR). To compensate this, the signal needs to 

be ampli fied, which then adds noise [EMB95, 158]. 

 

Wideband noise can be “filtered” by the ear, up to a certain degree. Humans can 

concentrate on the non-noisy parts of the signal, and do not notice the noise floor. 

However, in pauses, where only noise is audible, it is better noticed. Also, different 

types of noise decrease perceptual quality. As noise reduces the signal-to-noise ratio, it 

reduces overall fidelity. Consequently, noise is unwanted. 

7.6.2 Conventional Noise Reduction  

Much research has been done to reduce noise. Tape hiss45 can be lowered by using 

special noise reduction systems like the ones developed by Dolby. They dynamically 

compress the signal before recording. On playback, the signal is expanded to its original 

amplitude distribution. The recorded signal on tape has a limited dynamic range, so the 

low dynamic regions, where tape hiss occurs, are not used. However, these systems alter 

                                                 
45 A special kind of noise that originates on analog recordings on magnetic tapes. 
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slightly certain parts of the signal and can have hearable distortions sometimes [ROA96, 

396]. 

 

Another way to reduce noise perception is a noise gate. It monitors the amplitude of the 

signal. Once the signal’s amplitude falls below a certain threshold, the signal is muted 

completely. The noise gate does not remove noise; it only eliminates the noisy pauses, 

where noise is perceived especially well . 

 

A common technical for digital reduction of noise is done by special filtering. At first, 

the pure noise is analyzed. Its frequency response is used to construct a filter, which 

removes the frequency components of the analyzed noise [EMB95, 158]. In this case, 

where the frequency distribution is known, also FFT-based algorithms are very effective 

[RKK00, 2], but have less applicabilit y on non-stationary parts of the signal. It is 

diff icult to use these algorithms for real-time noise reduction: the frequency analysis can 

only be done with a noise-only signal. When the type of noise changes, the filter needs 

to be recalculated. Additionally, the filters also reduce frequency components of the 

original signal that lie in the noise spectrum. 

7.6.3 Wavelet-based Algorithm 

Noise reduction using the wavelet transform has been initially researched by Donoho 

[GRA95, 12]. Using the WT for denoising is superior compared to conventional 

techniques explained above, because denoising is done in different scales with different 

time resolution. 

 

Two major wavelet-based denoising algorithms have been developed by Donoho: linear 

denoising, where noise is assumed to consist of high frequency components. The 

corresponding scales (the finer scales) are set to zero [RKK00, 2]. 

 

The second algorithm, non-linear denoising, or wavelet shrinkage, assumes noisy data 

to have low energy in the wavelet domain. This corresponds with the abilit y of the 

wavelet transform to extract the main (correlated) “ features” of a signal. Two variants 

were developed by Donoho: hard thresholding sets all coeff icients below a certain 

threshold to zero, maintaining all others. Soft thresholding also sets the low coeff icients 
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to zero, but reduces all other coefficients by the threshold. Like this, the wavelet 

coefficients are smoother, but the energy of the signal is heavily modified [LGO95, 4]. 

 

Non-linear denoising proved to work well for many different types of signals: 1D 

medical, 2D geophysical and synthetic aperture radar signals [LGO95, 1]. Images can 

be denoised successfully, too. As non-linear denoising is dependent on the signal (i.e. it 

does not remove anything when all coefficients are greater than the threshold), it is even 

used in fields where not noise is to be removed: e.g. for removing blocking artifacts of 

JPEG compressed images [LGO95, 1].  

 

Non-linear denoising can remove many kinds of noise; it is not necessary to know the 

type of noise as for conventional algorithms.  

 

Many refinements of non-linear denoising have been developed. Most notably, 

algorithms exist to find the optimal threshold. Other algorithms use a non-decimated 

WT. For further information, the reader is referred to [LGO95], [RKK00], [COI94], 

[GSB97], [MMO96, 6-82f.]. 

7.6.4 Implementation 

The implementation is done as a filter extension in class DenoiseFilter. The 2 types of 

non-linear denoising, soft and hard thresholding, can be chosen with a parameter. Other 

parameters are the threshold, how many levels are to be denoised, and whether the 

paddings are included for thresholding. The parameters allow flexible control about the 

denoising process. 

 

In tests it has been found out that denoising low levels is not very effective. It results in 

phase distortions of lower frequencies, which cause discontinuities at the chunk borders. 

These can be perceived as clicks. Additionally, denoising of lower scales did not 

improve perceptual amount of noise reduction. Therefore, the number of levels to be 

denoised can be chosen. Wavelet shrinkage of the first 5 levels showed to work well 

with many kinds of musical signals. 

 

The implementation of the non-linear noise reduction algorithm has been 

straightforward: the wavelet coefficients are examined one after another. When its 
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absolute value falls below the threshold, it is set to zero. For soft thresholding, 

additionally all other coeff icients are reduced by the threshold. 

7.6.5 Results 

In general, noise reduction gave good results. With low noise levels, denoising worked 

very effective. The soft thresholding method showed to work well , hard thresholding 

created audible artifacts. Many types of noise can be removed from many different 

audio signals. The audio part of the accompanying CD-ROM presents some audible 

examples how to denoise recordings (see appendix D.7 for more details). 

 

Testing has been done with synthetic white gaussian noise created by the noise 

generator filter (see ch.7.4.4 on p.72) and with real signals that have a significant 

amount of noise. The accompanying CD-ROM contains some audible examples of 

original pieces of music and their denoised version (see Appendix D). 

 

Still , some problems occurred. The threshold parameter effectively controls the amount 

of noise to be removed. With a suff icient high threshold, it is possible to remove also 

high noise levels. However, a significant amount of the musical signal is removed, too, 

especially high-frequency components tend to be affected.  

 

Additionally, noise is not removed uniformly: with lower threshold levels, which do not 

affect the signal much, spurious noise components remained. These do not correspond 

to a noise floor – they are quite audible and sound grainy. Therefore, parameterization is 

crucial, and a tradeoff between amount of removed noise and modification to the 

original has to be done. 

 

For quantitative estimation of eff iciency, selected pieces of music have been denoised 

and an error estimation has been calculated. This method is described in [RKK00, 8], 

and works only when the original signal is known. The error estimation is EE /ˆ , where 

Ê  is the square root of the energy of the difference of original signal and denoised 

signal, and E is the square root of the energy of the added noise. The condition 1/ˆ <EE  

guarantees successful removal of noise [RKK00, 8]. 
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For all tests, a Battle-Lemarié wavelet has been used with 49 filter coeff icients. The 

denoiser has been set to denoise the first 5 levels, paddings inclusive, using soft 

thresholding. The piece of music46 has a wide frequency usage and some short 

transients. 

 

At first, the energy of pure noise at different amplitudes has been collected to calculate 

E. Then, two series of measurements of Ê  were done: in the first, the threshold has 

been set to yield a minimum error47. Secondly, the threshold has been set by ear: where 

the least noise was noticeable, with acceptable modification of the music.  

Series 1: minimum error Series 2: threshold by ear Noise 
amplitude48 threshold EE /ˆ  threshold EE /ˆ  
-37dB (1.4%) -58dB 0.956 -50dB 1.121 
-34dB (2.0%) -50dB 0.977 -47dB 1.063 
-32dB (2.5%) -50dB 0.921 -45dB 1.012 
-30dB (3.2%) -51,5dB 0.896 -43.5dB 0.940 
-27dB (4.5%) -44.5dB 0.840 -40dB 0.871 

Table 1: Noise reduction measurements 

The quantitative error estimation shows that the implemented algorithm is able to 

remove successfully white gaussian noise in a real time environment – without 

specifically adapting the algorithm to the type of noise. EE /ˆ stays below one in all 

measurements in series 1, even for higher noise levels. However, when listening to the 

denoised music from series 1, noise is still audible.  

 

When the threshold is adjusted by ear, the error estimate is greater, sometimes even 

above 1. Listening to the output of series 2, noise is effectively removed. However, also 

music is removed, which explains the increased the error estimate. This also shows that 

numbers are not suff icient for evaluating the performance of audio filters, li stening to 

the output is always necessary, too. 

                                                 
46 Dnbloop.wav – on the CD-ROM in directory “Program”. 
47 found by trial and error 
48 the value in parenthesis gives the linear volume 
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7.7 Equalizing 

7.7.1 Overview 

An equalizer or spectrum shaper changes frequency power of selected bands. The term 

originates from one of its first applications: to compensate irregularities of the playback 

medium. For example, a concert hall with a resonant boom at 150Hz needs attenuation 

at this frequency to compensate the hall ’s exaggeration of it [ROA96, 194]. 2 special 

kinds of equalizers are widely used, e.g. in mixing consoles, ampli fiers or consumer hi-

fi products. A graphic equalizer has one control each for a frequency band. Most 

graphic equalizers have a fixed Q49. The control allows attenuation or boosts of its 

respective frequency band. A parametric equalizer allows changing the center 

frequency of each frequency band. Some also offer adjustment of the gain and 

bandwidth of the filter [ROA96, 194]. In the following, the term “equalizer” is used as 

synonym for “graphic equalizer” . 

7.7.2 Conventional Equalization 

Digital equalization systems are conventionally built using a filter bank. Each filter of 

the filter bank is a narrow band pass filter. The output of the filters is combined to give 

the equalized signal [ROA96, 193]. 

7.7.3 Wavelet-based Algorithm 

Even if using the wavelet transform for equalizing involves filter banks, it is a different 

approach: the output of the filter bank is not used to form the output signal, rather, the 

output of the inverse transform produces the equalized output. The WT is adequate for 

wide band equalization, as it has constant-Q filter bands; each scale corresponds to one 

frequency band [CHE96, ch.5]. 

 

The algorithm uses a set of factors, one for each scale. The wavelet coeff icients of each 

scale are multiplied with the factor of the corresponding scale. A factor of 1 leaves the 

coeff icients unchanged, lower values attenuate the scale’s coeff icients and higher values 

                                                 
49 see paragraph 4.2 on p.25 
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ampli fy it. As the scales correspond to frequency bands, the corresponding frequency 

components of the signal are changed according to the factors. 

7.7.4 Implementation 

The wavelet equalizer is implemented as a filter extension in class EqualizerFilter. As 

all of the wavelet filters, it needs to be surrounded by the wavelet filters (ch.7.4.1 on 

p.69). With a parameter for each scale, the factors of the respective scale can be 

modified. 

 

It exists a different operating mode: the addition mode adds or subtracts a value per 

scale from the coeff icients, instead of multiplying them. While not having a direct 

musical application, it has been shown to be very useful for experimental research on 

the wavelet domain. Applied to music, a slight increase of all coeff icients of a scale 

results in added noise. When applied to silence, the pure sum of all wavelets of one 

scale can be heard: depending on the used wavelet, more or less clean sounding tones 

result. The scale determines the pitch of the tone, which is, not surprisingly, in intervals 

of octaves between 2 scales. 

7.7.5 Results 

The equalizer filter works as expected. With a wavelet of good frequency band 

separation and therefore a suff icient filter length, the amount of aliasing is very low. 

The frequency bands of the scales can well be boosted or lowered. The equalizer can be 

listened to in the third audio example (track 4) in the audio part of the accompanying 

CD-ROM (see appendix D.7 for more details). 

 

Two problems occur when the factors are set to extreme values, li ke setting some 

factors to 0. Firstly, aliasing occurs. This originates in the non-perfect separation of the 

frequency bands. The used 49-tap filter (Battle-Lemarié with 49 filter coeff icients) 

creates very littl e aliasing compared to shorter wavelets, still it can be heard with these 

extreme settings. Secondly, the boundaries do not match, especially when low scales are 

changed heavily. The symmetric extension scheme improves the boundary errors 

compared to circular or zero padding. But in all cases, the discontinuities at the 

boundaries can be heard as littl e clicks when factors are set to extreme values. 
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For experiments on wavelets, this filter extension provides many applications. For 

example, by setting all factors to 0 except one, the output of one single scale can be 

heard. The addition mode provides material for new experiments, too. Like explained 

above, the results of adding to or subtracting from the coefficients can be explored. The 

uniformly arranged wavelets (when all wavelet coefficients of one scale are set to a 

certain value, by applying the addition mode to a silent signal) provide conclusions 

about the frequency of a scale of different wavelets. 
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8 Conclusion 

This thesis analyzed the usage of the wavelet transform for real time digital audio. By 

providing theoretical background and presenting important aspects that apply for using 

wavelets for signal processing, it has been shown that wavelets are an efficient 

technique of analysis, processing, and resynthesis of the time-scale representation. 

 

The presented implementation is a suitable base for development of wavelet-based 

processing in real time. The GUI and the realized extensions enable exploration and 

further research on wavelets and the filter bank wavelet transform. The real time aspect 

adds a new dimension to existent research on wavelets. 

 

Denoising and graphical equalization have been successfully implemented as a wavelet-

domain filter. Further improvements are possible for future work to eliminate the side 

effects. Especially the choice of the wavelet remains a critical aspect. Future research 

should be directed on finding suitable wavelets with minimum phase distortion and 

maximum separation of frequency bands to further eliminate aliasing. The clicks due to 

the boundary problem (see ch. 6.3.4 on p.56) should be completely removed by using 

the smooth padding scheme and eventually applying an overlap-and-add algorithm. 

 

This thesis provides a rich base to continue the research on wavelet-based signal 

processing in real time.  
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Appendix A  - Class Description 

Here, all classes that were implemented are shortly described. Inside a paragraph, they 

are ordered by declared header file and logical coherency. 

A.1 Wavelet classes 

Name: WaveletCoeffs 
Declared in: wavelets/wavelets.h 
Child of: none 
Description: Manages a set of wavelet coefficients in different levels/scales. 
 

Name: WaveletTransform 
Declared in: wavelets/wavelets.h 
Child of: none 
Description: Provides methods for calculating forward and inverse wavelet transform. 

A.2 Framework Core Classes 

Name: CFOURCC 
Declared in: core/audioclasses.h 
Child of: none 
Description: Class for handling a four-letter code. It is used as identifier for various 

types, like the encoding type. 
 

 

Name: AudioDeviceFormat 
Declared in: core/audioclasses.h 
Child of: AudioFormat 
Description: Base class for AudioFormat of audio devices. In addition to AudioFormat, 

it has the attribute bits per sample. 
 

Name: AudioFileFormat 
Declared in: core/audioclasses.h 
Child of: AudioDeviceFormat 
Description: Base class for AudioFormat of files. It has additional attributes for file 

type, file name extension, encoding, whether samples are signed  
and whether samples are in little or big endian. 
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Name: AudioStream 
Declared in: core/audioclasses.h 
Child of: None 
Description: Interface for an audiostream. It has attributes position and audio format. 

Methods allow to open/close and start/stop the stream. 
 

Name: AudioReader 
Declared in: core/audioclasses.h 
Child of: AudioStream 
Description: An AudioStream from which can be read samples. 
 

Name: AudioWriter 
Declared in: core/audioclasses.h 
Child of: AudioStream 
Description: An AudioStream to which can be written samples. 
 

Name: AudioExtension 
Declared in: core/audioclasses.h 
Child of: none 
Description: Base interface for all extensions. It contains methods for retrieving 

information of the extension like name, description and its author. 
 

Name: AudioFile 
Declared in: core/audioclasses.h 
Child of: AudioExtension 
Description: Base interface of an extension that handles audio files. 
 

Name: AudioFileReader 
Declared in: core/audioclasses.h 
Child of: AudioFile, AudioReader 
Description: Interface for an audio file reader. It is based on AudioFile and on 

AudioReader. 
 

Name: AudioFileWriter 
Declared in: core/audioclasses.h 
Child of: AudioFile, AudioWriter 
Description: Interface for classes that write audio files. It is based on AudioFile and on 

AudioWriter. 
 

Name: AudioTickCallback 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for classes that receive events of a ticker. 
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Name: AudioTickProvider 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for classes that provide ticks - that are tickers. 
 

Name: AudioExtensionTickProvider 
Declared in: core/audioclasses.h 
Child of: AudioExtension, AudioTickProvider 
Description: Interface for tick provider extensions. 
 

Name: AudioMessageReceiver 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for classes that can receive audio messages. Audio messages are 

currently only 2 integer values. 
 

Name: AudioMessageSender 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for classes that send audio messages. Any number of 

AudioMessageReceivers can register to receive the events. 
 

Name: AudioDevice  
Declared in: core/audioclasses.h 
Child of: AudioExtension, AudioTickProvider, AudioMessageSender 
Description: Interface for audio devices. It is based on AudioExtension. 
 

Name: AudioDeviceReader  
Declared in: core/audioclasses.h 
Child of: AudioDevice, public AudioReader 
Description: Interface for an audio device that reads audio data from the device. This 

means, e.g. recording. 
 

Name: AudioFilterCallback 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for classes that wish to receive events from AudioFilters. Like 

this an audio filter can notify when a parameter changed. 
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Name: AudioFilter  
Declared in: core/audioclasses.h 
Child of: AudioExtension 
Description: Interface for audio filter extensions. Audio filters have an audio format, 

and the most important "work" method, where the actual processing of the 
audio data is done. 

 

Name: AudioCodec  
Declared in: core/audioclasses.h 
Child of: AudioExtension 
Description: Interface for an extension that provides encoding/decoding capabilities. 
 

Name: Lock 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for a class that provides thread synchronization. It needs a 

system-dependent implementation. 
 

Name: Thread 
Declared in: core/audioclasses.h 
Child of: none 
Description: Interface for creating a thread and managing it. It can be stopped and the 

priority can be changed. 
 

Name: Clist 
Declared in: core/audioutils.h 
Child of: none 
Description: Class that handles a list of elements of pointer type. Elements can be  

added, deleted, moved, etc. Push and pop methods let it work as a stack. 
 

 

Name: WinLock 
Declared in: core/windows/winsynchro.h 
Child of: Lock 
Description: Implementation of the Lock interface for the Windows platform. 
 

Name: WinThread  
Declared in: core/windows/winsynchro.h 
Child of: Thread 
Description: Implementation of the Thread interface for the Windows platform. 
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Name: AudioMixer  
Declared in: audioimpl.h 
Child of: AudioReader 
Description: An AudioReader implementation that reads from any number of input 

AudioReaders. The input streams are mixed. Any number of filter 
extensions can be applied to the mixed stream. 

 

Name: AudioSynchronizer  
Declared in: audioimpl.h 
Child of: AudioTickCallback 
Description: Reference implementation of a synchronizer that reads data from an 

AudioReader and writes data to any number of AudioWriters. On every 
tick event, a chunk is read from the reader and written to the writers. 

A.3 Framework Extensions 

Name: PCMCodec  
Declared in: codecs/pcmcodec.h 
Child of: AudioCodec 
Description: Generic implementation of a simple PCM codec. It converts PCM 

samples to floating point samples. 
 

Name: WaveFileReader  
Declared in: fileio/wavefile.h 
Child of: AudioFileReader 
Description: Extension that reads Microsoft WAVE files. It implements the 

AudioFileReader interface. 
 

Name: WaveFileWriter  
Declared in: fileio/wavefile.h 
Child of: AudioFileWriter 
Description: Extension that writes Microsoft WAVE files. It implements the 

AudioFileWriter interface. 
 

Name: DirectSoundWriter  
Declared in: devices/windows/directsound.h 
Child of: AudioDeviceWriter, ThreadRunner 
Description: Device writer extension for DirectSound devices. 
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Name: MMEReader  
Declared in: devices/windows/mmewave.h 
Child of: AudioDeviceReader, ThreadRunner 
Description: A device reader extension that uses MME for capturing audio data from 

the sound card. 

A.4 Filters 

Name: EqualizerFilter 
Declared in: filters/wlscale.h 
Child of: AudioFilter 
Description: A wide band graphical equalizer in the wavelet domain. 
 

Name: ShowWLFunctionFilter  
Declared in: filters/wlscale.h 
Child of: AudioFilter 
Description: Allows showing the wavelet function with a time domain display. 
 

Name: DelayFilter  
Declared in: filters/delays.h 
Child of: AudioFilter 
Description: Filter extension that adds a delay (echo) effect to the audio stream. 
 

Name: DenoiseFilter  
Declared in: filters/denoise.h 
Child of: AudioFilter 
Description: Filter extension that denoises the audio stream in the wavelet domain. 
 

Name: BWLowpassFilter  
Declared in: filters/lowpass.h 
Child of: AudioFilter 
Description: Filter extension that applies an IIR low pass filter to the audio stream. It 

uses the Butterworth filter design method. 
 

Name: NoiseFilter  
Declared in: filters/quality.h 
Child of: AudioFilter 
Description: Adds white gaussian noise to the audio stream. 
 

Name: DifferenceBeginFilter  
Declared in: filters/quality.h 
Child of: AudioFilter 
Description: Takes a snapshot of the audio stream. 
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Name: DifferenceEndFilter  
Declared in: filters/quality.h 
Child of: AudioFilter 
Description: Uses the snapshot of DifferenceBeginFilter and calculates the difference 

to the current stream. 
 

Name: StatisticsFilter  
Declared in: filters/quality.h 
Child of: AudioFilter 
Description: Provides some statistical data of the audio stream. 
 

Name: WTFilterInfo 
Declared in: filters/wlfilter.h 
Child of: none 
Description: This class is stored as WaveletInfo in the SampleBuffer to provide the 

wavelet coefficients to following filter extensions. 
 

Name: WTForwardFilter  
Declared in: filters/wlfilter.h 
Child of: AudioFilter 
Description: Calculates the forward wavelet transform of the audio stream. The 

wavelet coefficients are stored in an WTFilterInfo instance in the 
SampleBuffer so that following filters can access the wavelet domain. 

 

Name: WTInverseFilter  
Declared in: filters/wlfilter.h 
Child of: AudioFilter 
Description: Applies the inverse transform to the wavelet coefficients stored in the 

SampleBuffer. 
 

Name: WaveletDisplayFilter 
Declared in: filters/windows/wldisplay.h 
Child of: AudioFilter 
Description: Displays a scalogram of the wavelet filter coefficients. This filter 

extension needs Windows. 
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Name: TimeDisplayFilter 
Declared in: filters/windows/timedisplay.h 
Child of: AudioFilter 
Description: Shows a window that paints the audio stream in time vs. amplitude 

planes. This filter extension is for Windows platforms. 

A.5 Windows GUI 

Name: StreamInfo 
Declared in: wingui/winmain.h 
Child of: none 
Description: Base class for storing information about audio stream objects and their 

visual representation. 
 

Name: DeviceInfo  
Declared in: wingui/winmain.h 
Child of: StreamInfo, AudioMessageReceiver 
Description: Base class for storing information about device objects and their visual 

representation. 
 

Name: DeviceReaderInfo 
Declared in: wingui/winmain.h 
Child of: DeviceInfo 
Description: Class for storing information about device reader instances and their 

visual representation. 
 

Name: DeviceWriterInfo  
Declared in: wingui/winmain.h 
Child of: DeviceInfo 
Description: Class for storing information about device writer instances and their 

visual representation. 
 

Name: FileInfo  
Declared in: wingui/winmain.h 
Child of: StreamInfo 
Description: Base class for storing information about file reader/writer instances and 

their visual representation. 
 

Name: FileReaderInfo  
Declared in: wingui/winmain.h 
Child of: FileInfo 
Description: Class for storing information about file reader instances and their visual 

representation. 
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Name: FileWriterInfo  
Declared in: wingui/winmain.h 
Child of: FileInfo 
Description: Class for storing information about file writer instances and their visual 

representation. 
 

Name: FilterParamDescr 
Declared in: wingui/winmain.h 
Child of: none 
Description: Informational class for one parameter of a filter extension. 
 

Name: FilterParamList  
Declared in: wingui/winmain.h 
Child of: Clist 
Description: A CList-based class for handling lists of parameters. 
 

Name: FilterInfo  
Declared in: wingui/winmain.h 
Child of: AudioFilterCallback 
Description: Class for storing information about filter extension instances and their 

visual representation. 
 

Name: FilterInfoList  
Declared in: wingui/winmain.h 
Child of: CList, FilterTimingCallback 
Description: List of FilterInfo instances. The visual representation is handled also. 
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Appendix B – Class Inheritance Trees 

In this appendix, the most important interfaces and classes of the audio framework (i.e. 

no extensions or the GUI program) are presented in inheritage trees. The diagrams use a 

notation similar to UML. The included methods are a representative selection, they are 

not exhaustive; especially utility methods and overridden methods are not included. 
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B.1 Core Interfaces and Classes 

 

AudioFileWriter 
 

setBitsPerSample 
 getEncodingsCount 
 getEncoding 
setEncoding 
 

AudioFileReader 
 

setLooped 
isLooped 
 

AudioReader 
 

read 

AudioWriter 
 

write 
setAudioFormat 

AudioFile 
 

getAudioFileFormat 
setFilename 
getFilename 
canSeek 
seek  
getFrameCount 
skip  

AudioTickProvider 
 

Declaration below 

AudioStream 
 

getAudioFormat 
open 
close 
isOpen 
start 
stop 
isStarted 
available 
getFramePos 

AudioDevice 
getAudioDeviceFormat 
setAudioDeviceFormat 
 getDeviceCount 
getDeviceName 
setDevice 
getDevice 
getBufferCount 
setBufferCount 
getBufferSizeFrames 
setBufferSizeFrames 
getDeviceModuleInfo 

AudioDeviceReader 
 

AudioDeviceWriter 
 

AudioExtension 
 

Declaration below 
 

AudioExtension 
 

Declaration below 

Legend 
 

Interface 
 
 
Implementation 
 
 
B inherits from A 

A 

B 

AudioFormat 
 

getFrameRate 
getChannelCount 
frames2Bytes 
bytes2Frames 
frames2ms 
ms2frames  
getBytesPerSample 

AudioFilter 
 

getAudioFormat 
setAudioFormat 
work 
getParameterCount 
getParameterInfo 
setParameterValue 
getParameterValue 
getFormattedParameterValue 
 AudioFileFormat 

 

getFileType 
getExtension 
getEncoding 
isBigEndian 
isSigned 

AudioDeviceFormat 
 

getBitsPerSample 

AudioTickProvider 
 

startTicker 
stopTicker 
setTickSize 
getTickSize 
 

AudioExtension 
 

getExtensionName 
getExtensionAuthor 
getDescription 

AudioTickCallback 
 

ticked 
 

AudioExtensionTickProvider 
 

 
 

AudioCodec 
 

encode 
decode 

SampleBuffer 
 

getChannelCount 
getSampleCount 
makeSilence 
copyChannel 
addChannelToChannel 
getBuffer 
pushSubset 
popSubset 
 

CList 
 

addElement 
getCount 
getElement 
setElement 
removeElement 
indexOf 
push 
pop 
isEmpty 
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B.2 Platform-dependent Interfaces 

 

Lock 
 

lock 
unlock 

Thread 
 

run 
terminate 
terminated 
isRunning 
sleep 
setPriority 
getPriority 

Threadrunner 
 

run 
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Interface 
 

 

B.3 High-level Classes 

 

AudioSynchronizer 
 

start 
stop 
setTickSize 
getTickSize 
setReader 
addWriter 
removeWriter 
setTickProvider 

AudioMixer 
 

addInput 
removeInput 
addFilter 
removeFilter 
 

AudioReader 
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Interface 
 
 
Implementation 
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B 

AudioTickCallback 
 

 

B.4 Windows Implementation 

 

WinThread 
 

Thread 
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Interface 
 
 
Implementation 
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B 

WinLock 
 

Lock 
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Appendix C – Audio Framework Chains 

Here, 2 audio chains are presented to show the possibilities of the audio framework. 

C.1 Audio Chain of the GUI 

 
WaveFileReader 
 

 

MMEReader 
 

 

AudioMixer 
 

 

Any number of 
filter extensions 
 

 

WaveFileWriter 
 

 

DirectSoundWriter 
 

 

AudioSynchronizer 
 

 

Legend 
  audio f low  
  Class instance 

 

 

C.2 An example Audio Chain 
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AudioMixer 2 
 

 

Equalizer 

 

AudioMixer 3 
 

 

DirectSound- 
Writer 1 
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Synchronizer 
 

 

DirectSound- 
Writer 2 
 

 

Lowpass 
filter 

WaveFileReader 
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Appendix D – the CD-ROM 

This thesis is accompanied by a CD-ROM. It contains the implemented program as 

source and as executable files, some sound examples, this document in PDF format, the 

bibliography documents (where available) and the necessary programs to view the files. 

In the audio part, some audible presentations are provided. 

 

The CD-ROM is created with the Joliet file system. This allows long filenames and can 

be read on major operating systems. To incorporate both data and audio, it is a mixed 

mode CD-ROM. 

D.1 Directory “ Bibliography”  

In this directory, there are all referenced documents, as far as they are available in 

electronic format. The documents are placed in sub directories, which are named after 

the abbreviation of the reference, as used in this thesis. The files are in the formats 

PostScript (extension .ps), HTML (extension .html or .htm), PDF (extension .pdf) or 

Microsoft Word (extension .doc). In the sub directories, a file “web.txt” or “email .txt” 

(or both) contains the source URL or email address from where the document has been 

obtained. 

D.2 Directory “ Program”  

The executable program for Windows can be found here, it is called “WaveletTest.exe”. 

It runs on Windows 95 (with DirectX 3.0 or higher installed), Windows 98, Windows 

NT 4 (with service pack 3 or higher) and Windows 2000. Also some audio files with the 

extension .wav are in this directory. They can be used in the application. 

D.3 Directory “ Readers”  

Here, the applications for reading the various document types can be found. In the 

respective sub directories, there are Adobe Acrobat Reader for PDF files, Microsoft 

Internet Explorer 5 and Netscape Communicator 4.7 for HTML files and 



Wavelets in real time digital audio processing 

- D-2 - 

GhostScript/GhostView for PostScript files. All these programs are for the Windows 

platform and they are in English language. 

D.4 Directory “ Source”  

This directory contains all source files. They have the extension “ .h” for header files and 

“ .cpp” for c++ source code. The “build” sub directory contains project and workspace 

files for Microsoft Visual C++ version 6. In the “lib” directory, all i nterfaces and classes 

of the audio framework, the extensions and the wavelet classes can be found. The 

WinGUI directory contains the source code of the example application for Windows. 

D.5 Directory “ Thesis”  

In this directory, the thesis (this document) can be found in PDF, PostScript and Word 

97 (or 2000) format. A sub directory contains the images of the document. The Word 

document needs the image directory, as it reads the images from there. 

D.6 Directory “ Unsorted Info”  

This directory contains more documents found in the Internet that are related to 

wavelets. Like for bibliography documents, a “web.txt” file references the origin. 

D.7 Audio part 

The audio part of the CD-ROM can be listened to with ordinary CD players or by using 

a CD player program on the computer. Some examples demonstrate the usage and 

sound of the implemented application. They are completely created with the application. 

 

The first track is the CD-ROM part and should not be played back. Four tracks explain 

some possibiliti es of the implemented program: the first example (track 2) uses the 

denoiser to reduce the noise of a historic sonata recording. A more technical example is 

track 3: denoising of artificially created noise is demonstrated as well as usage and 

sound of the difference listener. The third example in track 4 explains the wavelet 

equalizer filter extension and shows some of its capabiliti es. The combination of 
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denoising and equalizing is presented in the last example (track 5): the quality of a 

home recording is improved with the 2 filter extensions. 
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