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It’s a Real-time World
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Why Real-Time Java?? 

 Traditional methodologies
• Highly restricted programming models with verifiable properties
• And/Or low-level languages for explicit control
• “ad-hoc low-level methods with validation by simulation and prototyping”

 But: these methodologies do not scale
• Halting problem
• Low productivity (low-level languages, hand-optimization)

 And: complexity of real-time systems are growing extremely fast
• From isolated devices to integrated multi-level networked systems
• Traditional methodologies break down
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Why Not Real-time Java?

 Garbage Collection
• Non-deterministic pauses from 100 ms to 1 second
• Requirement for real-time behavior is 100 us to 10 ms

 Dynamic (JIT) Compilation
• Unpredictable interruptions
• Large variation in speed (10x)

 Dynamic Loading and Resolution
• Semantics determined by run-time ordering

 Optimization technology optimizes average case
• Thin locks, speculative in-lining, value prediction, etc.
• Sometimes cause non-deterministic slowdowns 

 …



Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers                            ICMC’07 - Copenhagen                   30 August 20075

Demo: Synthesizer on Non-RT Java
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Garbage Collection: Motivation & History
 Invented in 1960 by McCarthy for Lisp

• Objects are reclaimed automatically when no longer in use

 Huge advantages:
• No bugs due to freeing of memory still in use
• Simpler interfaces since lifetime management not required
• Type safety
• Security

 Used in:
• Lisp, Smalltalk, ML, Java, C#, Lua, Python, …

 But not in:
• C, C++, Pascal, Ada, Fortran, …
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Previous Partial Solutions to GC Problems
 Two main types

• Generational Collection (Ungar)
• Incremental Collection (Dijkstra, Yuasa)

 Many pathologies:
• High nursery survival rate (1ms -> 40ms collection)
• Atomic root snapshot (no thread scaling)
• Unpredictable termination (“last” pointer problem, 100s of ms)
• Inability to handle large objects in real-time
• Uneven utilization (driven by allocation or pointer access)
• Subject to fragmentation
• High (sometimes unbounded) memory overhead
• Failure to incrementalize weak reference, finalizers, strings, …
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Java for Real-time: Current Practice
 Avoid allocation after setup

• Low-level programming, vulnerable to allocation by libraries
 Allocate from object pools

• Only works for homogeneous objects, suffers from “free” bugs
 Use Scoped memory constructs of RTSJ

• Manual, suffers from unpredictable run-time exceptions
 Use a generational collector

• Puts off the inevitable, slow when survival rate is high
 Use an incremental collector

• Often works but subject to numerous failure modes
 Use reference counting (automatic or manual)

• Does not collect cycles (at least not predictably)
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Metronome: RT GC without Pathologies
 All phases of collection incrementalized
 All collector work deferrable to next desired quantum
 Scheduling regular and guaranteed by metric (MMU)
 Threads processed independently
 Internal fragmentation bounded (parameter, use 1/8)
 External fragmentation prevented (on-demand compact)
 Large objects broken into pieces (“arraylets”)
 Constant-time allocation
 Single-quantum termination
 Simple and provable feasibility: live memory, allocation rate

 Result: application allocating 10 MB/s, with 1000 threads, 1 GB 
heap, 10 MB objects, and many phase changes can run for weeks 
with zero violations, 2ms worst-case latency
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IBM Real-Time Java (J9 Virtual Machine)
 Metronome Real-time Garbage Collection

• Provides real-time without changing the programming model
 RTSJ (Real-Time Specification for Java) – existing standard

• Scheduling
• Scopes

 Ahead-of-Time Compilation
• Ahead-of-time (AOT) compilation and JXE  Linking
• Removes JIT non-determinism, allows code to be moved into ROM
• Class pre-loading

 Real-time Linux
• Maximize use of existing patches; stabilize; add needed features
• Contribute to open-source community

 Status
• Shipping product since 8/06, over $100M contract revenue
• In use in telecom, military, and financial industries
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Harmonicon Java Synthesizer
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Java for Real-time MIDI Synthesis
 Typical real-time music application
 Requires max 5-10ms latency, 1-2ms jitter

 Harmonicon: all-Java synthesizer
• SoundFont-2 wavetable synthesizer
• 64-bit sample precision
• Arbitrary polyphony (500 voices on current hardware)
• Concurrent (multiprocessor) rendering
• Modular, flexible, high-level design
• Extensive use of object-orientation and dynamic allocation
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Harmonicon Synthesizer Architecture
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Experimental Evaluation
 Experimental Environment

• Dual Opteron 250 CPUs (2.4 GHz, 1MB L2 cache)
• M-Audio 2496 sound card (MIDI in, RCA out)
• IBM Real-time Linux (RHEL 4 U2, 2.6.16 based)
• IBM Websphere Real-time Java V1 SR1
• Debussy’s Doctor Gradus, Piano 1 instrument, max polyphony 13
• 44.1 KHz 32-bit stereo
• Additional 8 MB/s memory load thread executing at all times

 Measurements
• Evaluation of base MIDI latency/jitter
• Absolute measurements vs. Kurzweil K2000R
• Comparison of 4 garbage collectors
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Demo: Synthesis with RT Java

1ms buffer,
AOT compilation,
class preloading
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Absolute Latency Measurements
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Base MIDI Latency (milliseconds)

Min Mean Max StDev

ALSA via C 0.340 0.347 0.362 0.011

Java Sound 0.385 1.455 3.197 0.701

ALSA via 
Java/JNI 0.385 0.406 0.430 0.011
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Harmonicon vs Kurzweil K2000R

Min Mean Max StDev

Kurzweil 
K2000R 2.925 3.909 4.897 0.570

Harmonicon 
(1ms buffer) 4.240 4.959 5.736 0.317

Harmonicon
(365us buffer, 

no GC)

2.947 3.120 3.310 0.109
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GC Comparisons: ALSA Underruns
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GC Comparisons: Audio Discontinuities
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http://www.research.ibm.com/metronome

http://www.research.ibm.com/metronome
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Metronome:Transparent  Real-time Java
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Testbed 1: Autonomous Quad-rotor Helicopter 
 

 Single-helicopter control
• Fully custom design
• Completely Java-based
• 3 ms control loop period

1 m

[with Christoph Kirsch, University of Salzburg]

 Key Goals
• Validate with most critical  
physical control systems
• Time-portable real-time 
software
• Compositional real-time 

–Dynamic upload of other RT systems
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