
International Computer Music Conference Copenhagen 30 August 2007

Real-time Music Synthesis in
Java with the Metronome

Garbage Collector
Joshua Auerbach David F. Bacon
 IBM Research IBM Research

Florian Bomers Perry Cheng
 Bome Software IBM Research

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20072

It’s a Real-time World

60 MLOC
10ms

30 MLOC
1ms

80 MLOC
10us - 100ms

100 MLOC
10us - 10ms

50 MLOC
5ms

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20073

Why Real-Time Java??

 Traditional methodologies
• Highly restricted programming models with verifiable properties
• And/Or low-level languages for explicit control
• “ad-hoc low-level methods with validation by simulation and prototyping”

 But: these methodologies do not scale
• Halting problem
• Low productivity (low-level languages, hand-optimization)

 And: complexity of real-time systems are growing extremely fast
• From isolated devices to integrated multi-level networked systems
• Traditional methodologies break down

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20074

Why Not Real-time Java?

 Garbage Collection
• Non-deterministic pauses from 100 ms to 1 second
• Requirement for real-time behavior is 100 us to 10 ms

 Dynamic (JIT) Compilation
• Unpredictable interruptions
• Large variation in speed (10x)

 Dynamic Loading and Resolution
• Semantics determined by run-time ordering

 Optimization technology optimizes average case
• Thin locks, speculative in-lining, value prediction, etc.
• Sometimes cause non-deterministic slowdowns

 …

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20075

Demo: Synthesizer on Non-RT Java

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20076

Garbage Collection: Motivation & History
 Invented in 1960 by McCarthy for Lisp

• Objects are reclaimed automatically when no longer in use

 Huge advantages:
• No bugs due to freeing of memory still in use
• Simpler interfaces since lifetime management not required
• Type safety
• Security

 Used in:
• Lisp, Smalltalk, ML, Java, C#, Lua, Python, …

 But not in:
• C, C++, Pascal, Ada, Fortran, …

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20077

Previous Partial Solutions to GC Problems
 Two main types

• Generational Collection (Ungar)
• Incremental Collection (Dijkstra, Yuasa)

 Many pathologies:
• High nursery survival rate (1ms -> 40ms collection)
• Atomic root snapshot (no thread scaling)
• Unpredictable termination (“last” pointer problem, 100s of ms)
• Inability to handle large objects in real-time
• Uneven utilization (driven by allocation or pointer access)
• Subject to fragmentation
• High (sometimes unbounded) memory overhead
• Failure to incrementalize weak reference, finalizers, strings, …

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20078

Java for Real-time: Current Practice
 Avoid allocation after setup

• Low-level programming, vulnerable to allocation by libraries
 Allocate from object pools

• Only works for homogeneous objects, suffers from “free” bugs
 Use Scoped memory constructs of RTSJ

• Manual, suffers from unpredictable run-time exceptions
 Use a generational collector

• Puts off the inevitable, slow when survival rate is high
 Use an incremental collector

• Often works but subject to numerous failure modes
 Use reference counting (automatic or manual)

• Does not collect cycles (at least not predictably)

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 20079

Metronome: RT GC without Pathologies
 All phases of collection incrementalized
 All collector work deferrable to next desired quantum
 Scheduling regular and guaranteed by metric (MMU)
 Threads processed independently
 Internal fragmentation bounded (parameter, use 1/8)
 External fragmentation prevented (on-demand compact)
 Large objects broken into pieces (“arraylets”)
 Constant-time allocation
 Single-quantum termination
 Simple and provable feasibility: live memory, allocation rate

 Result: application allocating 10 MB/s, with 1000 threads, 1 GB
heap, 10 MB objects, and many phase changes can run for weeks
with zero violations, 2ms worst-case latency

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200710

IBM Real-Time Java (J9 Virtual Machine)
 Metronome Real-time Garbage Collection

• Provides real-time without changing the programming model
 RTSJ (Real-Time Specification for Java) – existing standard

• Scheduling
• Scopes

 Ahead-of-Time Compilation
• Ahead-of-time (AOT) compilation and JXE Linking
• Removes JIT non-determinism, allows code to be moved into ROM
• Class pre-loading

 Real-time Linux
• Maximize use of existing patches; stabilize; add needed features
• Contribute to open-source community

 Status
• Shipping product since 8/06, over $100M contract revenue
• In use in telecom, military, and financial industries

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200711

Harmonicon Java Synthesizer

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200712

Java for Real-time MIDI Synthesis
 Typical real-time music application
 Requires max 5-10ms latency, 1-2ms jitter

 Harmonicon: all-Java synthesizer
• SoundFont-2 wavetable synthesizer
• 64-bit sample precision
• Arbitrary polyphony (500 voices on current hardware)
• Concurrent (multiprocessor) rendering
• Modular, flexible, high-level design
• Extensive use of object-orientation and dynamic allocation

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200713

Harmonicon Synthesizer Architecture

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200714

Experimental Evaluation
 Experimental Environment

• Dual Opteron 250 CPUs (2.4 GHz, 1MB L2 cache)
• M-Audio 2496 sound card (MIDI in, RCA out)
• IBM Real-time Linux (RHEL 4 U2, 2.6.16 based)
• IBM Websphere Real-time Java V1 SR1
• Debussy’s Doctor Gradus, Piano 1 instrument, max polyphony 13
• 44.1 KHz 32-bit stereo
• Additional 8 MB/s memory load thread executing at all times

 Measurements
• Evaluation of base MIDI latency/jitter
• Absolute measurements vs. Kurzweil K2000R
• Comparison of 4 garbage collectors

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200715

Demo: Synthesis with RT Java

1ms buffer,
AOT compilation,
class preloading

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200716

Absolute Latency Measurements

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200717

Base MIDI Latency (milliseconds)

Min Mean Max StDev

ALSA via C 0.340 0.347 0.362 0.011

Java Sound 0.385 1.455 3.197 0.701

ALSA via
Java/JNI 0.385 0.406 0.430 0.011

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200718

Harmonicon vs Kurzweil K2000R

Min Mean Max StDev

Kurzweil
K2000R 2.925 3.909 4.897 0.570

Harmonicon
(1ms buffer) 4.240 4.959 5.736 0.317

Harmonicon
(365us buffer,

no GC)

2.947 3.120 3.310 0.109

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200719

GC Comparisons: ALSA Underruns

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200720

GC Comparisons: Audio Discontinuities

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200721

http://www.research.ibm.com/metronome

http://www.research.ibm.com/metronome

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200722

Metronome:Transparent Real-time Java

C++ Application

C++ Runtime System

Java Application

Java Runtime System

(JVM)

Garbage

Collection

Java Application

Metronome
Java Runtime System

Manual, Unsafe

Predictable

Automatic, Safe

Unpredictable

Automatic, Safe

Predictable

Real-time Music Synthesis in Java using the Metronome Garbage Collector

Bacon/Bomers ICMC’07 - Copenhagen 30 August 200723

Testbed 1: Autonomous Quad-rotor Helicopter

 Single-helicopter control
• Fully custom design
• Completely Java-based
• 3 ms control loop period

1 m

[with Christoph Kirsch, University of Salzburg]

 Key Goals
• Validate with most critical
physical control systems
• Time-portable real-time
software
• Compositional real-time

–Dynamic upload of other RT systems

	Real-time Music Synthesis in Java with the Metronome Garbage Collector
	It’s a Real-time World
	Why Real-Time Java??
	Why Not Real-time Java?
	Demo: Synthesizer on Non-RT Java
	Garbage Collection: Motivation & History
	Previous Partial Solutions to GC Problems
	Java for Real-time: Current Practice
	Metronome: RT GC without Pathologies
	IBM Real-Time Java (J9 Virtual Machine)
	Harmonicon Java Synthesizer
	Java for Real-time MIDI Synthesis
	Harmonicon Synthesizer Architecture
	Experimental Evaluation
	Demo: Synthesis with RT Java 1ms buffer, AOT compilation, class preloading
	Absolute Latency Measurements
	Base MIDI Latency (milliseconds)
	Harmonicon vs Kurzweil K2000R
	GC Comparisons: ALSA Underruns
	PowerPoint Presentation
	http://www.research.ibm.com/metronome
	Metronome:Transparent Real-time Java
	Testbed 1: Autonomous Quad-rotor Helicopter

