bome.com

R MR N

Hear the Garbage Collector:
a Software Synthesizer in Java
“Harmonicon”

An overview of the project implemented for IBM Research

Guest Speaker: Universitat Salzburg
Florian Bomers Fachbereich
Founder, bome.com Computerwissenschaften

Speaker Introduction

* Florian BOmers owns a software company specializing in
MIDI and audio tools

* Research and development of digital audio software
since 1986; in 2000 diploma thesis about real time audio
processing with wavelets

 From 2001-2004, he was leading Java Sound
development at Sun Microsystems

e Active in a number of open source projects about Java
Sound and audio software

* He works as consultant for various companies in the field
of audio/media software architecture

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 2

e |Introduction

 Goals

* Technologies

e Synthesizer Architecture
* Realtime Java integration
e Results so far

e Demo

e Qutlook

* Q&A/Discussion

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

Introduction

The idea:
e (Garbage Collectors interrupt the VM

» for audio playback, interruptions cause

- bad timing

- audible gaps
* areal time software synthesizer well suited:

- should allocate a lot of objects

— will expose intrusiveness of garbage collectors
> hire Florian to implement such a software synth

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 4

Goals

Before the implementation was started, these goals were
fixed:

* implement a full real time synthesis engine in pure Java
* adhere to standards

e optimize for high end, i.e. enable very high quality
(192KHz sampling rate, 64-bit float samples, 5.1
channels, no polyphony limitation)

» achieve 1 millisecond latency (possibly with custom
sound driver)

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 5

Technologies: MIDI

Musical Devices Digital Interface

Realtime protocol to control electronic music instruments
Industry standard since 1982 MIOI S EAT o ="®
Standardized MIDI cable with 5-pin DIN plug
Low bandwidth (31250bits/sec)

Send semantic commands rather than abstract sound
Sound generator required to hear the MIDI commands
Data is not queued/scheduled -> realtime

High requirements regarding jitter and latency

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

Technologies: MIDI cont.

e Different classes of commands

e Channel commands: Note On, Note Off, change
instrument, ...

e Realtime commands: Reset, ...

e Channel commands are assigned to one of 16 logical
channels

e Multi-timbral synthesizers play commands on different
channels with different instruments simultaneously

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 7

Technologies: MIDI Files

SMF — Standard MIDI File
Standardized 1991

Store MIDI commands in a file along with timing
information

Very efficient storage, ~10KB per minute
E.g.: accurately capture a live keyboard performance
Extensive editing possible, print the music, etc.

But: audio quality depends on tone generator!

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

Technologies: General MIDI

e Standardized set of 128 instruments

e Enables exchange of MIDI files — all General MIDI tone
generators will play the file with the right instruments

e Still: audio quality depends on tone generator!

e \Was extended to General MIDI 2, with several banks of
128 instruments each

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 9

Technologies: SoundFont |

Industry Standard by Creative Labs

MIDI to WAVE: take structured MIDI commands and
create a stream of (abstract) digital audio

Synthesis standard

Usually implemented in hardware on Creative Labs
soundcards

SoundFont files are exchanged on the Internet
- quality vs. size
- number of instruments
— unusual instruments

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 10

Technologies: SoundFont Il

Based on wave table:

e Each instrument is stored in form of a short recording
(wave file)

 When a note is triggered, the wave file is played

* Higher pitch is achieved by playing the file a little faster,
lower pitch vice versa

* Powerful meta data allows far reaching processing of the
stored wave files — loop portions, change volume curve,
apply frequency filters, change pitch curve

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

11

Architecture: Overview

* The synthesizer continuously renders small chunks of
audio data

e Each chunk contains the audio data for the MIDI notes
e The small chunks are written to the soundcard
* The size of the chunks determines the latency

\Wf \Wf \Wf

MIDI data audio data |
» Synthesis engine MMWWWWWW
soundcard

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 12

Architecture: MIDI input |

* When a MIDI command enters the synthesizer, it is time-
stamped with the current real time

e |tis added to a queue of MIDI commands

* From the synthesizer thread (in regular intervals) the
gueue is read and processed:

- for an instrument change, change the corresponding
value in the MidiChannel object

- for a Note On, insert a new note (next slide)
- for a Note Off, release the existing note (next slides)

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 13

Architecture: MIDI input |

Note On:
* A Note object is created.

- from the SoundFont wave table, find the wave of this
note's instrument

- from the SoundFont instrument definitions, retrieve the
meta data for this note, i.e. volume/pitch curves, fine
tune, etc.

* |nsert the Note object as input stream into the AudioMixer

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 14

Architecture: MIDI input ||

Note Off:

* In theory: find the corresponding Note object and remove
it from the mixer

e But: would cause very abrupt ending of the note, possibly
with click

e Rather, the Note enters the release phase: defined by the
SoundFont meta data, usually a fade out

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

15

Architecture: Audio Mixer |

e The AudioMixer is a “naive” class that owns a list of
Audiolnput objects

 \When the AudioMixer is asked to mix a buffer of audio
data, it mixes this buffer worth of audio data from all
Audiolnput objects

e public interface AudiolInput {
public void read (AudioBuffer buffer);

}

Audiolnput

AudioMixer mixed audio data -

Yvyvyyvy

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 16

Architecture: Audio Mixer Il

* AudioBuffer is a wrapper for a double[] array

* AudioMixer implements Audiolnput, can cascade
AudioMixers

e “Pull” architecture: the AudioMixer pulls from the
Audiolnput objects

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 17

Architecture: Audio Mixer Il

* The Note class implements Audiolnput: to the mixer, they
are just an object that provides an audio stream

* This abstraction allows heterogeneous synthesizers, e.g.
with different synthesis engines

* The number of current Audiolnput objects in the mixer is
the current polyphony

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 18

Architecture: Soundcard

* The master thread continuously

- reads an audio chunk from the mixer (“pull”)
- writes the chunk to the soundcard (“push?)

read() write()

soundcard

AudioMixer AudioPullThread (Java Sound)

data flow data flow

-

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 19

Architecture: Queuing?

* The synthesizer needs to queue 1 audio buffer worth of
MIDI commands

e E.qg.if the audio buffer size is 100 milliseconds:

- every 100 milliseconds, a buffer with 100 milliseconds
of audio is rendered

- already at the beginning of a 100ms period, the
engine needs to know the sound of the end of this
period

- this is e.g. because each Note renders a full 100ms
buffer at once

- synth always lacks 100ms behind real time
- needs to queue MIDI commands for 100ms

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 20

Architecture: Synchronization

e Since MIDI data is buffered, need to make sure that all
MIDI commands are processed in order

* Need to make sure that a Note On followed by a Note Off
in the same buffer will still create the Note and make it
audible

* Need a stable clock: usually use the soundcard'’s clock

* If the system clock is used to time-stamp MIDI data, need
to synchronize soundcard time with real time
(compensate drift)

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 21

Architecture: Performance |

* |n the example of 100ms buffers:

- 100 simultaneous notes require that each Note object
renders 100ms worth of audio data in just 1ms

e But...100ms is much too long:

- project requirement: 1ms buffers

- trained (human) ears can distinguish rhythmic errors
as small as 1ms

- latency of more than 10ms is disturbing for live
keyboard performance

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 22

Architecture: Performance Il

* The smaller the buffers, the more overhead:
- loop Iinitialization, jumps
- MIDI data processing always at buffer boundaries
- status checks
- more calls to write the data to the soundcard

e the smaller the buffers, the more fragile the synthesizer
becomes, and the more it will require real time scheduling

 If rendering comes late or takes too much time, the
soundcard will receive the next audio buffer too late
(buffer underrun), causing a short pause (click)

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 23

Architecture: Performance Il

Parallelization:
* Rendering each Note object is independent of other notes

- perfect for parallel execution on multiple processor
cores

* The synthesizer implements a scheduling algorithm for
multi-threaded rendering

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 24

Architecture: Performance |V

Soundcard driver:

e Java Sound's audio output is general purpose, not suited
for very low latency

* Windows' Direct Sound has minimum latency of 23ms
 On Linux, Java Sound uses ALSA, 5ms possible
* Needed a custom driver to directly talk to the soundcard:

- Linux implementation only, currently
- use ALSA directly
- low overhead

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 25

Real Time Java Integration |

e Use IBM's Eventrons:

- high frequency thread with hard scheduling
- suited to drive the main rendering thread

- even better suited to write rendered audio data to the
soundcard, “sample by sample”

* However, adds more synchronization points

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 26

Real Time Java Integration |

* Garbage collector (GC) problems:

- if GC interrupts right before a MIDI event is time-
stamped, the time stamp will be off

- GC may interrupt enough to cause the rendering
thread to take too much time

- GC may interrupt at the moment where the rendered
buffer is about to be written to the soundcard, so it will
come too late

* Therefore, Harmonicon will greatly benefit from the
Metronome GC

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 27

TuningFork Integration

* Integrate Harmonicon into TuningFork, IBM's visualizer of
garbage collector trace files

* played MIDI commands are available as staff view

it can be easily seen if musical delays originate from the
garbage collector

e See garbage collector activity and notes during playback

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 28

Status: Features

e Almost full SoundFont 2.01 standard implemented
(missing: some interactive controls, chorus and reverb
effects)

e Can play back real time MIDI and MIDI files
e GUI with some interactivity

e Eventron support

e Basic TuningFork integration

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 29

Status: Performance

* Rendering benchmarks on AMD 4400+, dual core, stock
IBM VM on Windows:

- normal MIDI file in 40x realtime
- up to 850 note polyphony
 With direct ALSA audio driver:

- stereo rendering, 10 channels written to soundcard
- 192KHz sampling rate

- 8 samples buffer size -> theoretical 40us latency
(higher in practice)

ALSA: Advanced Linux Sound Architecture (Linux audio driver model)

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 30

Status: Hearing the GC?

* Harmonicon does not allocate a lot of objects during
normal operation:

- every MIDI command is one object
- Note object are instantiated individually
- some other smaller objects
* Needed to add some allocations in order to let the GC
Kick In
* Then, stock garbage collectors were quite disrupting

- yes, we can hear the GCI!

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 31

Status: Real Time Java

e Eventron support works, but with current alpha version of
Eventrons does not increase performance

- Harmonicon will be useful for testing and optimizing
eventrons

* Running Harmonicon on the Metronome VM was not
possible yet, since no Metronome VM with JIT was
available

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 32

Status: Harmonicon in Concert!

* Perry on keyboard attached to a computer running
Harmonicon

* Florian on cello

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 33

e Listen to Harmonicon

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 34

Outlook

Some things still to be done:

e physically measure exact latency (rather than believing
the computer)

e multi channel/surround support
e implement MIDI effects
e optimize MIDI input with own driver

 full TuningFork integration

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java

35

Discussion

Florian.Bomers@bome.com L T A

Florian BOmers Hear the Garbage Collector:
June 30th, 2006 A Software Synthesizer in Java 36

