
Hear the Garbage Collector: 
a Software Synthesizer in Java

“Harmonicon”

Guest Speaker:
Florian Bömers
Founder, bome.com

Universität Salzburg
Fachbereich 
Computerwissenschaften

An overview of the project implemented for IBM Research



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 2

● Florian Bömers owns a software company specializing in 
MIDI and audio tools

● Research and development of digital audio software 
since 1986; in 2000 diploma thesis about real time audio 
processing with wavelets

● From 2001-2004, he was leading Java Sound 
development at Sun Microsystems

● Active in a number of open source projects about Java 
Sound and audio software

● He works as consultant for various companies in the field 
of audio/media software architecture

Speaker Introduction



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 3

● Introduction
● Goals
● Technologies
● Synthesizer Architecture
● Realtime Java integration
● Results so far
● Demo
● Outlook
● Q&A/Discussion

Agenda



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 4

The idea: 
● Garbage Collectors interrupt the VM
● for audio playback, interruptions cause

– bad timing
– audible gaps

● a real time software synthesizer well suited:
– should allocate a lot of objects
– will expose intrusiveness of garbage collectors

➔ hire Florian to implement such a software synth

Introduction



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 5

Before the implementation was started, these goals were 
fixed:

● implement a full real time synthesis engine in pure Java
● adhere to standards
● optimize for high end, i.e. enable very high quality 

(192KHz sampling rate, 64-bit float samples, 5.1 
channels, no polyphony limitation)

● achieve 1 millisecond latency (possibly with custom 
sound driver)

Goals



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 6

● Musical Devices Digital Interface
● Realtime protocol to control electronic music instruments
● Industry standard since 1982
● Standardized MIDI cable with 5-pin DIN plug
● Low bandwidth (31250bits/sec)
● Send semantic commands rather than abstract sound
● Sound generator required to hear the MIDI commands
● Data is not queued/scheduled -> realtime
● High requirements regarding jitter and latency

Technologies: MIDI



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 7

● Different classes of commands
● Channel commands: Note On, Note Off, change 

instrument, ...
● Realtime commands: Reset, ...
● Channel commands are assigned to one of 16 logical 

channels
● Multi-timbral synthesizers play commands on different 

channels with different instruments simultaneously

Technologies: MIDI cont.



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 8

● SMF – Standard MIDI File
● Standardized 1991
● Store MIDI commands in a file along with timing 

information
● Very efficient storage, ~10KB per minute
● E.g.: accurately capture a live keyboard performance
● Extensive editing possible, print the music, etc.
● But: audio quality depends on tone generator!

Technologies: MIDI Files



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 9

● Standardized set of 128 instruments
● Enables exchange of MIDI files – all General MIDI tone 

generators will play the file with the right instruments
● Still: audio quality depends on tone generator!
● Was extended to General MIDI 2, with several banks of 

128 instruments each

Technologies: General MIDI



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 10

● Industry Standard by Creative Labs
● MIDI to WAVE: take structured MIDI commands and 

create a stream of (abstract) digital audio
● Synthesis standard
● Usually implemented in hardware on Creative Labs 

soundcards
● SoundFont files are exchanged on the Internet

– quality vs. size
– number of instruments
– unusual instruments

Technologies: SoundFont I



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 11

Based on wave table:
● Each instrument is stored in form of a short recording 

(wave file)
● When a note is triggered, the wave file is played
● Higher pitch is achieved by playing the file a little faster, 

lower pitch vice versa
● Powerful meta data allows far reaching processing of the 

stored wave files – loop portions, change volume curve, 
apply frequency filters, change pitch curve

Technologies: SoundFont II



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 12

● The synthesizer continuously renders small chunks of 
audio data

● Each chunk contains the audio data for the MIDI notes
● The small chunks are written to the soundcard
● The size of the chunks determines the latency

Architecture: Overview

Synthesis engine
MIDI data audio data

soundcard



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 13

● When a MIDI command enters the synthesizer, it is time-
stamped with the current real time

● It is added to a queue of MIDI commands
● From the synthesizer thread (in regular intervals) the 

queue is read and processed:
– for an instrument change, change the corresponding 

value in the MidiChannel object
– for a Note On, insert a new note (next slide)
– for a Note Off, release the existing note (next slides)

Architecture: MIDI input I



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 14

Note On:
● A Note object is created:

– from the SoundFont wave table, find the wave of this 
note's instrument

– from the SoundFont instrument definitions, retrieve the 
meta data for this note, i.e. volume/pitch curves, fine 
tune, etc.

● Insert the Note object as input stream into the AudioMixer

Architecture: MIDI input II



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 15

Note Off:
● In theory: find the corresponding Note object and remove 

it from the mixer
● But: would cause very abrupt ending of the note, possibly 

with click
● Rather, the Note enters the release phase: defined by the 

SoundFont meta data, usually a fade out

Architecture: MIDI input III



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 16

● The AudioMixer is a “naive” class that owns a list of 
AudioInput objects

● When the AudioMixer is asked to mix a buffer of audio 
data, it mixes this buffer worth of audio data from all 
AudioInput objects

● public interface AudioInput {
public void read(AudioBuffer buffer);

}

Architecture: Audio Mixer I

AudioMixer

AudioInput

mixed audio data



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 17

● AudioBuffer is a wrapper for a double[] array
● AudioMixer implements AudioInput, can cascade 

AudioMixers
● “Pull” architecture: the AudioMixer pulls from the 

AudioInput objects

Architecture: Audio Mixer II



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 18

● The Note class implements AudioInput: to the mixer, they 
are just an object that provides an audio stream

● This abstraction allows heterogeneous synthesizers, e.g. 
with different synthesis engines

● The number of current AudioInput objects in the mixer is 
the current polyphony

Architecture: Audio Mixer III



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 19

● The master thread continuously
– reads an audio chunk from the mixer (“pull”)
– writes the chunk to the soundcard (“push”)

Architecture: Soundcard

AudioMixer

read()

AudioPullThread soundcard
(Java Sound)

data flow

write()

data flow



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 20

● The synthesizer needs to queue 1 audio buffer worth of 
MIDI commands

● E.g. if the audio buffer size is 100 milliseconds:
– every 100 milliseconds, a buffer with 100 milliseconds 

of audio is rendered
– already at the beginning of a 100ms period, the 

engine needs to know the sound of the end of this 
period

– this is e.g. because each Note renders a full 100ms 
buffer at once

– synth always lacks 100ms behind real time
– needs to queue MIDI commands for 100ms

Architecture: Queuing?



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 21

● Since MIDI data is buffered, need to make sure that all 
MIDI commands are processed in order

● Need to make sure that a Note On followed by a Note Off 
in the same buffer will still create the Note and make it 
audible

● Need a stable clock: usually use the soundcard's clock
● If the system clock is used to time-stamp MIDI data, need 

to synchronize soundcard time with real time 
(compensate drift)

Architecture: Synchronization



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 22

● In the example of 100ms buffers:
– 100 simultaneous notes require that each Note object 

renders 100ms worth of audio data in just 1ms
● But...100ms is much too long:

– project requirement: 1ms buffers
– trained (human) ears can distinguish rhythmic errors 

as small as 1ms
– latency of more than 10ms is disturbing for live 

keyboard performance

Architecture: Performance I



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 23

● The smaller the buffers, the more overhead:
– loop initialization, jumps
– MIDI data processing always at buffer boundaries
– status checks
– more calls to write the data to the soundcard

● the smaller the buffers, the more fragile the synthesizer 
becomes, and the more it will require real time scheduling

● If rendering comes late or takes too much time, the 
soundcard will receive the next audio buffer too late 
(buffer underrun), causing a short pause (click)

Architecture: Performance II



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 24

Parallelization:
● Rendering each Note object is independent of other notes

– perfect for parallel execution on multiple processor 
cores

● The synthesizer implements a scheduling algorithm for 
multi-threaded rendering

Architecture: Performance III



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 25

Soundcard driver:
● Java Sound's audio output is general purpose, not suited 

for very low latency
● Windows' Direct Sound has minimum latency of 23ms
● On Linux, Java Sound uses ALSA, 5ms possible
● Needed a custom driver to directly talk to the soundcard:

– Linux implementation only, currently
– use ALSA directly
– low overhead

Architecture: Performance IV



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 26

● Use IBM's Eventrons:
– high frequency thread with hard scheduling
– suited to drive the main rendering thread
– even better suited to write rendered audio data to the 

soundcard, “sample by sample”
● However, adds more synchronization points

Real Time Java Integration I



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 27

● Garbage collector (GC) problems:
– if GC interrupts right before a MIDI event is time-

stamped, the time stamp will be off
– GC may interrupt enough to cause the rendering 

thread to take too much time
– GC may interrupt at the moment where the rendered 

buffer is about to be written to the soundcard, so it will 
come too late

● Therefore, Harmonicon will greatly benefit from the 
Metronome GC

Real Time Java Integration II



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 28

● Integrate Harmonicon into TuningFork, IBM's visualizer of 
garbage collector trace files

● played MIDI commands are available as staff view
● it can be easily seen if musical delays originate from the 

garbage collector
● See garbage collector activity and notes during playback

TuningFork Integration



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 29

Status: Features
● Almost full SoundFont 2.01 standard implemented

(missing: some interactive controls, chorus and reverb 
effects)

● Can play back real time MIDI and MIDI files
● GUI with some interactivity
● Eventron support
● Basic TuningFork integration



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 30

Status: Performance
● Rendering benchmarks on AMD 4400+, dual core, stock 

IBM VM on Windows:
– normal MIDI file in 40x realtime
– up to 850 note polyphony

● With direct ALSA audio driver:
– stereo rendering, 10 channels written to soundcard
– 192KHz sampling rate
– 8 samples buffer size -> theoretical 40цs latency 

(higher in practice)

ALSA: Advanced Linux Sound Architecture (Linux audio driver model)



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 31

Status: Hearing the GC?
● Harmonicon does not allocate a lot of objects during 

normal operation:
– every MIDI command is one object
– Note object are instantiated individually
– some other smaller objects

● Needed to add some allocations in order to let the GC 
kick in

● Then, stock garbage collectors were quite disrupting
– yes, we can hear the GC!



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 32

Status: Real Time Java
● Eventron support works, but with current alpha version of 

Eventrons does not increase performance
– Harmonicon will be useful for testing and optimizing 

eventrons
● Running Harmonicon on the Metronome VM was not 

possible yet, since no Metronome VM with JIT was 
available



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 33

Status: Harmonicon in Concert!
● Perry on keyboard attached to a computer running 

Harmonicon
● Florian on cello
● David supervising the computer



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 34

Demo

● Listen to Harmonicon



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 35

Outlook
Some things still to be done:
● physically measure exact latency (rather than believing 

the computer)
● multi channel/surround support
● implement MIDI effects
● optimize MIDI input with own driver
● full TuningFork integration



Florian Bömers
June 30th, 2006

Hear the Garbage Collector:
A Software Synthesizer in Java 36

Discussion

Florian.Bomers@bome.com


